Updating search results...

Physical Science Textbooks and Full Courses

1177 affiliated resources

Search Resources

View
Selected filters:
Electromagnetic Wave Theory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.632 is a graduate subject on electromagnetic wave theory, emphasizing mathematical approaches, problem solving, and physical interpretation. Topics covered include: waves in media, equivalence principle, duality and complementarity, Huygens’ principle, Fresnel and Fraunhofer diffraction, dyadic Green’s functions, Lorentz transformation, and Maxwell-Minkowski theory. Examples deal with limiting cases of Maxwell’s theory and diffraction and scattering of electromagnetic waves.

Subject:
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kong, Jin Au
Date Added:
02/01/2003
Electromagnetics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, phase matching, dielectric waveguides and optical fibers, transmission line theory and circuit concepts, antennas, and equivalent principle. Examples deal with electrodynamics, propagation, guidance, and radiation of electromagnetic waves.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kong, Jin Au
Date Added:
09/01/2006
Electromagnetics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

I have revamped the book Electromagnetics 1 by Steven Ellingson as a part of idoer project. Changes I made in this version of the book include:
• Cover design
• Typesetting
• Visual improvement of figures
• Addition of problems.

If you notice any errors please check the original source which is available at:
https://vtechworks.lib.vt.edu/handle/10919/84164

Image source:
https://drive.google.com/drive/folders/1k2zHmuuHwUTnM5ea5ifaqcvkU5XJ_9eT

If you have any questions about this version of the work please message me directly or contact me at watershiptepesi@gmail.com.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Author:
Steven W. Ellingson
Date Added:
08/15/2023
Electromagnetics, Volume 1
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics Volume 1 by Steven W. Ellingson is a 225-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wage equations for voltage and current.

Suggested citation: Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0

Three formats of this book are available:
Print (ISBN 978-0-9979201-8-5)
PDF (ISBN 978-0-9979201-9-2)
LaTeX source files

If you are a professor reviewing, adopting, or adapting this textbook please help us understand a little more about your use by filling out this form: http://bit.ly/vtpublishing-updates

Additional Resources
Problem sets and the corresponding solution manual are also available.
Community portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455/
Faculty listserv for the Electromagnetics series https://groups.google.com/a/vt.edu/d/forum/electromagnetics-g
Submit feedback and suggestions http://bit.ly/electromagnetics-suggestion

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Electric and Magnetic Fields
Chapter 3: Transmission Lines
Chapter 4: Vector Analysis
Chapter 5: Electrostatics
Chapter 6: Steady Current and Conductivity
Chapter 7: Magnetostatics
Chapter 8: Time-Varying Fields
Chapter 9: Plane Waves in Lossless Media
Appendixes
A. Constitutive Parameters of Some Common Materials
B. Mathematical Formulas
C. Physical Constants

About the Author: Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016).

This textbook is part of the Open Electromagnetics Project led by Steven W. Ellingson at Virginia Tech. The goal of the project is to create no-cost openly-licensed content for courses in undergraduate engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Accessibility features of this book: Screen reader friendly, navigation, and Alt-text for all images and figures.

Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
08/23/2018
Electromagnetics, Volume 2
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas.

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Magnetostatics Redux
Chapter 3: Wave Propagation in General Media
Chapter 4: Current Flow in Imperfect Conductors
Chapter 5: Wave Reflection and Transmission
Chapter 6: Waveguides
Chapter 7: Transmission Lines Redux
Chapter 8: Optical Fiber
Chapter 9: Radiation
Chapter 10: Antennas
Appendix A: Constitutive Parameters of Some Common Materials
Appendix B: Mathematical Formulas
Appendix C: Physical Constants

Additional Resources
Problem sets and the corresponding solution manuals
Slides of figures used in and created for the book
LaTeX sourcefiles.
Screen-reader friendly version
Errata for Volume 2
Collaborator portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455
Faculty listserv for the Electromagnetics series
Submit feedback and suggestions

The Open Electromagnetics Project https://www.faculty.ece.vt.edu/swe/oem
Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Books in this Series
Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1
Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2

To express your interest in a book or this series, please visit http://bit.ly/vtpublishing-updates

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
12/16/2019
Electromagnetics and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Staelin, David
Date Added:
02/01/2009
Electromagnetics and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.
Acknowledgments
The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Ippen, Erich
Staelin, David
Zahn, Markus
Date Added:
09/01/2005
Electromagnetism II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of matter; time-dependent electromagnetic fields; Maxwell’s equations; electromagnetic waves; emission, absorption, and scattering of radiation; and relativistic electrodynamics and mechanics.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chen, Min
Guth, Alan
Date Added:
09/01/2012
Electromechanical Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1968 by John Wiley and Sons, Inc., Electromechanical Dynamics discusses the interaction of electromagnetic fields with media in motion. The subject combines classical mechanics and electromagnetic theory and provides opportunities to develop physical intuition. The book uses examples that emphasize the connections between physical reality and analytical models. Types of electromechanical interactions covered include rotating machinery, plasma dynamics, the electromechanics of biological systems, and magnetoelasticity.
An accompanying solutions manual for the problems in the text is provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Melcher, James
Woodson, Herbert
Date Added:
02/01/2009
Electron Microprobe Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The electron microprobe provides a complete micrometer-scale quantitative chemical analysis of inorganic solids. The method is nondestructive and utilizes characteristic X-rays excited by an electron beam incident on a flat surface of the sample. This course provides an introduction to the theory of X-ray microanalysis through wavelength and energy dispersive spectrometry (WDS and EDS), ZAF matrix correction procedures and scanning electron imaging with back-scattered electron (BSE), secondary electron (SE), X-ray using WDS or EDS (elemental mapping), and cathodoluminescence (CL). Lab sessions involve hands-on use of the JEOL JXA-8200 Superprobe.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chatterjee, Nilanjan
Date Added:
01/01/2012
Electronic, Optical and Magnetic Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Anikeeva, Polina
Beach, Geoffrey
Holten-Andersen, Niels
Date Added:
02/01/2013
Electronic and Mechanical Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Fitzgerald, Eugene
Gibson, Lorna
Date Added:
09/01/2007
Elementary Earth and Space Science Methods
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Biology, Chemistry, Physics, Space, and Earth Science

Word Count: 74440

(Note: This resource's metadata has been created automatically as part of a bulk import process by reformatting and/or combining the information that the author initially provided. As a result, there may be errors in formatting.)

Subject:
Life Science
Physical Science
Material Type:
Textbook
Author:
Ted Neal
Date Added:
11/18/2021
Elementary GLOBE: Cloudscape
Read the Fine Print
Rating
0.0 stars

A learning activity for the "Do You Know That Clouds Have Names?" book in the Elementary GLOBE series. Using information from the book and their observations, students construct a sky scene with trees and buildings as reference points on the ground and cloud types ordered by altitude in the sky. Students will describe clouds using their own vocabulary and will then correlate their descriptions with the standard classifications of cloud types used by the GLOBE Program. The purpose of the activity is to help students identify some of the characteristics of clouds and to enable students to observe clouds, describe them in a common vocabulary, and compare their descriptions with the official cloud names. Students will be able to identify cloud types using standard cloud classification names. They will know that the names used for the clouds are based on three factors: their shapes, the altitude at which they occur, and whether they are producing precipitation.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
02/16/2011
Elementary GLOBE: Magnify That
Read the Fine Print
Rating
0.0 stars

Students will learn about magnification and how a magnifying lens works. They will examine a variety of different objects, first without a magnifier and then with a magnifier, and compare what they observe. They will practice observing details of these objects with magnifying lens. The purpose of this activity is for students to learn about observation skills and how tools can help people make observations, what "magnification" means, and to learn that scientists use tools, such as magnifying lenses, to examine objects. Students will be able to identify a magnifying glass and its purposes. They will be able to describe how the same object looks different when using the unaided eye versus a magnifying lens.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
02/16/2011
Elementary GLOBE: To Spread or Not To Spread
Read the Fine Print
Rating
0.0 stars

A learning activity for the "Do You Know That Clouds Have Names?" book in the Elementary GLOBE series. Students will explore the difference between the three types of contrails, make observations of contrails outside, and record their observations. Fifteen minutes later they will make follow-up observations to see how the contrails they observed have changed. The purpose of the activity is to help students identify contrails and learn to distinguish between the three types of contrails and to understand that contrails are human-made and some contrails become clouds in the sky. Students will be able to (1) identify the three types of contrails; (2) understand that contrails are created by jet airplanes; and (3) understand that some contrails become clouds.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
02/16/2011
Energy Economics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the theoretical and empirical perspectives on individual and industrial demand for energy, energy supply, energy markets, and public policies affecting energy markets. It discusses aspects of the oil, natural gas, electricity, and nuclear power sectors and examines energy tax, price regulation, deregulation, energy efficiency and policies for controlling emission.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Economics
Environmental Science
Environmental Studies
Physical Science
Political Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Joskow, Paul
Date Added:
02/01/2007
Energy Economics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the theoretical and empirical perspectives on individual and industrial demand for energy, energy supply, energy markets, and public policies affecting energy markets. It discusses aspects of the oil, natural gas, electricity, and nuclear power sectors and examines energy tax, price regulation, deregulation, energy efficiency and policies for controlling emission.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Economics
Environmental Science
Environmental Studies
Physical Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Joskow, Paul
Date Added:
02/01/2007
Energy Industry Applications of GIS
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Is Energy and GIS your passion? If so, Energy Industry Applications of GIS provides students with an in-depth exploration of the complexities of siting decisions in the electricity market. The course introduces a variety of siting challenges that confront the energy industry and its customers and neighbors but focuses on the siting of electrical transmission lines. The course also provides hands-on experience with a common decision support technology, ArcGIS, and considers how the technology may be used to facilitate public participation in siting decisions.

Subject:
Physical Geography
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Ron Santini
Date Added:
10/07/2019
Energy and Human Ambitions on a Finite Planet
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Where is humanity going? How realistic is a future of fusion and space colonies? What constraints are imposed by physics, by resource availability, and by human psychology? Are default expectations grounded in reality?

This textbook, written for a general-education audience, aims to address these questions without either the hype or the indifference typical of many books. The message throughout is that humanity faces a broad sweep of foundational problems as we inevitably transition away from fossil fuels and confront planetary limits in a host of unprecedented ways—a shift whose scale and probable rapidity offers little historical guidance.

Salvaging a decent future requires keen awareness, quantitative assessment, deliberate preventive action, and—above all—recognition that prevailing assumptions about human identity and destiny have been cruelly misshapen by the profoundly unsustainable trajectory of the last 150 years. The goal is to shake off unfounded and unexamined expectations, while elucidating the relevant physics and encouraging greater facility in quantitative reasoning.

After addressing limits to growth, population dynamics, uncooperative space environments, and the current fossil underpinnings of modern civilization, various sources of alternative energy are considered in detail— assessing how they stack up against each other, and which show the greatest potential. Following this is an exploration of systemic human impediments to effective and timely responses, capped by guidelines for individual adaptations resulting in reduced energy and material demands on the planet’s groaning capacity. Appendices provide refreshers on math and chemistry, as well as supplementary material of potential interest relating to cosmology, electric transportation, and an evolutionary perspective on humanity’s place in nature.

Corrections and feedback can be left at https://tmurphy.physics.ucsd.edu/energy-text/

Subject:
Physical Science
Material Type:
Textbook
Author:
Thomas W. Murphy
Date Added:
03/15/2021