Our world runs on energy - without it, things come to a …
Our world runs on energy - without it, things come to a screeching halt, as the recent hurricanes have shown. Ever stop to wonder what our energy future is? What are our options for energy, and what are the associated economic and climatic implications? In \Energy and the Environment\" we explore these questions, which together represent one of the great challenges of our time - providing energy for high quality of life and economic growth while avoiding dangerous climate change. This course takes an optimistic view of our prospects, and we'll see how shifting to renewable energy can lead to a viable future.
This course is an introduction to the dynamics and vibrations of lumped-parameter …
This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange’s equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.
Engineering principles of nuclear reactors, emphasizing power reactors. Topics include power plant …
Engineering principles of nuclear reactors, emphasizing power reactors. Topics include power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), structural mechanics, and engineering considerations in reactor design.
In this course, students explore the engineering design of nuclear power plants …
In this course, students explore the engineering design of nuclear power plants using the basic principles of reactor physics, thermodynamics, fluid flow and heat transfer. Topics include reactor designs, thermal analysis of nuclear fuel, reactor coolant flow and heat transfer, power conversion cycles, nuclear safety, and reactor dynamic behavior.
Short Description: Enhanced Introductory College Chemistry is a collaboratively created textbook with …
Short Description: Enhanced Introductory College Chemistry is a collaboratively created textbook with Georgian College, Loyalist College and Conestoga College supported by a VLS grant from eCampus Ontario. It is designed to address most chemistry topics covered in an introductory chemistry course in most program areas. Topics include measurement, matter, atomic theory, nomenclature, moles, chemical equations, stoichiometry, chemical bonding, gases, liquids, solutions, acids and bases, equilibrium and oxidation-reduction. Each chapter contains examples, relevant images, embedded videos, exercises and interactive exercises with answers, links to external interactive tools, glossary, and review practice questions with selected answers. A noted effort was made to include Indigenous examples to support chemistry learning as well as highlighting Scientists in Action. Extensive resources to support Indigenization of chemistry and Equity, Diversity and Inclusion in chemistry are provided in the front matter. Accessibility of learning material was addressed through descriptive alt-text and screen reader supported text wherever possible. NewParaAdditional resources of image banks for faculty are also available. Authors of this book will use portions of it for introductory chemistry courses in Biotechnology, Environmental Science, College and Career Preparation and Pre-Health Science programs.NewParaPublication date: February 28, 2023
Word Count: 317204
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
Increasingly volatile climate and weather; vulnerable drinking water supplies; shrinking wildlife habitats; …
Increasingly volatile climate and weather; vulnerable drinking water supplies; shrinking wildlife habitats; widespread deforestation due to energy and food production. These are examples of environmental challenges that are of critical importance in our world, both in far away places and close to home, and are particularly well suited to inquiry using geographic information systems. In GEOG 487 you will explore topics like these and learn about data and spatial analysis techniques commonly employed in environmental applications. After taking this course you will be equipped with relevant analytical approaches and tools that you can readily apply to your own environmental contexts.
The classic campus-based project is an environmental or sustainability assessment, often referred …
The classic campus-based project is an environmental or sustainability assessment, often referred to as an environmental audit. This course, taught at Carleton in 2001, describes how this type of project can be undertaken. In this scenario, a student, campus environmental group or class researches aspects the envinormental impact of the school.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Suzanne Savanick, Science Education Resource Center, Carleton College. Based on a Greening the Campus environmental studies colloquium course taught at Carleton College in 1991.
This course explores the complex interrelationships among humans and natural environments, focusing …
This course explores the complex interrelationships among humans and natural environments, focusing on non-western parts of the world in addition to Europe and the United States. It uses environmental conflict to draw attention to competing understandings and uses of “nature” as well as the local, national and transnational power relationships in which environmental interactions are embedded. In addition to utilizing a range of theoretical perspectives, this subject draws upon a series of ethnographic case studies of environmental conflicts in various parts of the world.
This course explores the complex interrelationships among humans and natural environments, focusing …
This course explores the complex interrelationships among humans and natural environments, focusing on non-western parts of the world in addition to Europe and the United States. It uses environmental conflict to draw attention to competing understandings and uses of “nature” as well as the local, national and transnational power relationships in which environmental interactions are embedded. In addition to utilizing a range of theoretical perspectives, this subject draws upon a series of ethnographic case studies of environmental conflicts in various parts of the world.
The geologic record demonstrates that our environment has changed over a variety …
The geologic record demonstrates that our environment has changed over a variety of time scales from seconds to billions of years. This course explores the many ways in which geologic processes control and modify the Earth’s environment and serves as an introduction to Environmental Earth Science Field Course (12.120), which addresses field applications of these principles in the American Southwest.
In this unit, students explore the various roles of environmental engineers, including: …
In this unit, students explore the various roles of environmental engineers, including: environmental cleanup, water quality, groundwater resources, surface water and groundwater flow, water contamination, waste disposal and air pollution. Specifically, students learn about the factors that affect water quality and the conditions that enable different animals and plants to survive in their environments. Next, students learn about groundwater and how environmental engineers study groundwater to predict the distribution of surface pollution. Students also learn how water flows through the ground, what an aquifer is and what soil properties are used to predict groundwater flow. Additionally, students discover that the water they drink everyday comes from many different sources, including surface water and groundwater. They investigate possible scenarios of drinking water contamination and how contaminants can negatively affect the organisms that come in contact with them. Students learn about the three most common methods of waste disposal and how environmental engineers continue to develop technologies to dispose of trash. Lastly, students learn what causes air pollution and how to investigate the different pollutants that exist, such as toxic gases and particulate matter. Also, they investigate the technologies developed by engineers to reduce air pollution.
This graduate seminar is taught in a lecture and lab exercise format. The …
This graduate seminar is taught in a lecture and lab exercise format. The subject matter is tailored to introduce Environmental Engineering students to the use and potential of Geographic Information Systems in their discipline. Lectures will cover the general concepts of GIS use and introduce the material in the exercises that demonstrate the practical application of GIS.
Environmental Geology is taught in a seminar fashion or large lecture style. …
Environmental Geology is taught in a seminar fashion or large lecture style. In both situations it is the methodology not content that differs. The major goal of the course is to explore aspects of geology that have significant impacts on humans. Some of these impacts have been exacerbated culturally and historically. We will examine those factors and impacts.
Lab instructions for Environmental Geology students Word Count: 19773 (Note: This resource's …
Lab instructions for Environmental Geology students
Word Count: 19773
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
This class provides a general introduction to the diverse roles of microorganisms …
This class provides a general introduction to the diverse roles of microorganisms in natural and artificial environments. It will cover topics including: cellular architecture, energetics, and growth; evolution and gene flow; population and community dynamics; water and soil microbiology; biogeochemical cycling; and microorganisms in biodeterioration and bioremediation.
This course explores the proper role of government in the regulation of …
This course explores the proper role of government in the regulation of the environment. It will help students develop the tools to estimate the costs and benefits of environmental regulations. These tools will be used to evaluate a series of current policy questions, including: Should air and water pollution regulations be tightened or loosened? What are the costs of climate change in the U.S. and abroad? Is there a “Race to the Bottom” in environmental regulation? What is “sustainable development”? How do environmental problems differ in developing countries? Are we running out of oil and other natural resources? Should we be more energy efficient? To gain real world experience, the course is scheduled to include a visit to the MIT cogeneration plant. We will also do an in-class simulation of an air pollution emissions market.
This course explores the proper role of government in the regulation of …
This course explores the proper role of government in the regulation of the environment. It will help students develop the tools to estimate the costs and benefits of environmental regulations. These tools will be used to evaluate a series of current policy questions, including: Should air and water pollution regulations be tightened or loosened? What are the costs of climate change in the U.S. and abroad? Is there a “Race to the Bottom” in environmental regulation? What is “sustainable development”? How do environmental problems differ in developing countries? Are we running out of oil and other natural resources? Should we be more energy efficient? To gain real world experience, the course is scheduled to include a visit to the MIT cogeneration plant. We will also do an in-class simulation of an air pollution emissions market.
In this course will focus on both biotic and abiotic systems. You …
In this course will focus on both biotic and abiotic systems. You will learn about ecosystems and their interactions, water (including surface water, ponds and lakes, groundwater, water quality), soils, and resources both renewable and non-renewable resources. You will also how the basic systems influence the ecosystems of the Earth. You will investigate threatened and endangered species in our world. Environmental health and the importance of agriculture are also discussed in terms of their impact on our ecosystems.
A great variety of processes affect the surface of the Earth. Topics …
A great variety of processes affect the surface of the Earth. Topics to be covered are production and movement of surficial materials; soils and soil erosion; precipitation; streams and lakes; groundwater flow; glaciers and their deposits. The course combines aspects of geology, climatology, hydrology, and soil science to present a coherent introduction to the surface of the Earth, with emphasis on both fundamental concepts and practical applications, as a basis for understanding and intelligent management of the Earth’s physical and chemical environment.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.