Updating search results...

Search Resources

6 Results

View
Selected filters:
  • PeerJ
Data reuse and the open data citation advantage
Unrestricted Use
CC BY
Rating
0.0 stars

Background. Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the “citation benefit”. Furthermore, little is known about patterns in data reuse over time and across datasets. Method and Results. Here, we look at citation rates while controlling for many known citation predictors and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued to accumulate for at least six years. To study patterns of data reuse directly, we compiled 9,724 instances of third party data reuse via mention of GEO or ArrayExpress accession numbers in the full text of papers. The level of third-party data use was high: for 100 datasets deposited in year 0, we estimated that 40 papers in PubMed reused a dataset by year 2, 100 by year 4, and more than 150 data reuse papers had been published by year 5. Data reuse was distributed across a broad base of datasets: a very conservative estimate found that 20% of the datasets deposited between 2003 and 2007 had been reused at least once by third parties. Conclusion. After accounting for other factors affecting citation rate, we find a robust citation benefit from open data, although a smaller one than previously reported. We conclude there is a direct effect of third-party data reuse that persists for years beyond the time when researchers have published most of the papers reusing their own data. Other factors that may also contribute to the citation benefit are considered. We further conclude that, at least for gene expression microarray data, a substantial fraction of archived datasets are reused, and that the intensity of dataset reuse has been steadily increasing since 2003.

Subject:
Applied Science
Information Science
Life Science
Social Science
Material Type:
Reading
Provider:
PeerJ
Author:
Heather A. Piwowar
Todd J. Vision
Date Added:
08/07/2020
On the reproducibility of science: unique identification of research resources in the biomedical literature
Unrestricted Use
CC BY
Rating
0.0 stars

Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the “identifiability” of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.

Subject:
Biology
Life Science
Social Science
Material Type:
Reading
Provider:
PeerJ
Author:
Gregory M. LaRocca
Holly Paddock
Laura Ponting
Matthew H. Brush
Melissa A. Haendel
Nicole A. Vasilevsky
Shreejoy J. Tripathy
Date Added:
08/07/2020
Rate and success of study replication in ecology and evolution
Unrestricted Use
CC BY
Rating
0.0 stars

The recent replication crisis has caused several scientific disciplines to self-reflect on the frequency with which they replicate previously published studies and to assess their success in such endeavours. The rate of replication, however, has yet to be assessed for ecology and evolution. Here, I survey the open-access ecology and evolution literature to determine how often ecologists and evolutionary biologists replicate, or at least claim to replicate, previously published studies. I found that approximately 0.023% of ecology and evolution studies are described by their authors as replications. Two of the 11 original-replication study pairs provided sufficient statistical detail for three effects so as to permit a formal analysis of replication success. Replicating authors correctly concluded that they replicated an original effect in two cases; in the third case, my analysis suggests that the finding by the replicating authors was consistent with the original finding, contrary the conclusion of “replication failure” by the authors.

Subject:
Biology
Ecology
Life Science
Material Type:
Reading
Provider:
PeerJ
Author:
Clint D. Kelly
Date Added:
08/07/2020
Registered reports: an early example and analysis
Unrestricted Use
CC BY
Rating
0.0 stars

The recent ‘replication crisis’ in psychology has focused attention on ways of increasing methodological rigor within the behavioral sciences. Part of this work has involved promoting ‘Registered Reports’, wherein journals peer review papers prior to data collection and publication. Although this approach is usually seen as a relatively recent development, we note that a prototype of this publishing model was initiated in the mid-1970s by parapsychologist Martin Johnson in the European Journal of Parapsychology (EJP). A retrospective and observational comparison of Registered and non-Registered Reports published in the EJP during a seventeen-year period provides circumstantial evidence to suggest that the approach helped to reduce questionable research practices. This paper aims both to bring Johnson’s pioneering work to a wider audience, and to investigate the positive role that Registered Reports may play in helping to promote higher methodological and statistical standards.

Subject:
Applied Science
Information Science
Psychology
Social Science
Material Type:
Reading
Provider:
PeerJ
Author:
Caroline Watt
Diana Kornbrot
Richard Wiseman
Date Added:
08/07/2020
Reproducible and reusable research: are journal data sharing policies meeting the mark?
Unrestricted Use
CC BY
Rating
0.0 stars

Background There is wide agreement in the biomedical research community that research data sharing is a primary ingredient for ensuring that science is more transparent and reproducible. Publishers could play an important role in facilitating and enforcing data sharing; however, many journals have not yet implemented data sharing policies and the requirements vary widely across journals. This study set out to analyze the pervasiveness and quality of data sharing policies in the biomedical literature. Methods The online author’s instructions and editorial policies for 318 biomedical journals were manually reviewed to analyze the journal’s data sharing requirements and characteristics. The data sharing policies were ranked using a rubric to determine if data sharing was required, recommended, required only for omics data, or not addressed at all. The data sharing method and licensing recommendations were examined, as well any mention of reproducibility or similar concepts. The data was analyzed for patterns relating to publishing volume, Journal Impact Factor, and the publishing model (open access or subscription) of each journal. Results A total of 11.9% of journals analyzed explicitly stated that data sharing was required as a condition of publication. A total of 9.1% of journals required data sharing, but did not state that it would affect publication decisions. 23.3% of journals had a statement encouraging authors to share their data but did not require it. A total of 9.1% of journals mentioned data sharing indirectly, and only 14.8% addressed protein, proteomic, and/or genomic data sharing. There was no mention of data sharing in 31.8% of journals. Impact factors were significantly higher for journals with the strongest data sharing policies compared to all other data sharing criteria. Open access journals were not more likely to require data sharing than subscription journals. Discussion Our study confirmed earlier investigations which observed that only a minority of biomedical journals require data sharing, and a significant association between higher Impact Factors and journals with a data sharing requirement. Moreover, while 65.7% of the journals in our study that required data sharing addressed the concept of reproducibility, as with earlier investigations, we found that most data sharing policies did not provide specific guidance on the practices that ensure data is maximally available and reusable.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Material Type:
Reading
Provider:
PeerJ
Author:
Jessica Minnier
Melissa A. Haendel
Nicole A. Vasilevsky
Robin E. Champieux
Date Added:
08/07/2020
The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research
Unrestricted Use
CC BY
Rating
0.0 stars

The widespread use of ‘statistical significance’ as a license for making a claim of a scientific finding leads to considerable distortion of the scientific process (according to the American Statistical Association). We review why degrading p-values into ‘significant’ and ‘nonsignificant’ contributes to making studies irreproducible, or to making them seem irreproducible. A major problem is that we tend to take small p-values at face value, but mistrust results with larger p-values. In either case, p-values tell little about reliability of research, because they are hardly replicable even if an alternative hypothesis is true. Also significance (p ≤ 0.05) is hardly replicable: at a good statistical power of 80%, two studies will be ‘conflicting’, meaning that one is significant and the other is not, in one third of the cases if there is a true effect. A replication can therefore not be interpreted as having failed only because it is nonsignificant. Many apparent replication failures may thus reflect faulty judgment based on significance thresholds rather than a crisis of unreplicable research. Reliable conclusions on replicability and practical importance of a finding can only be drawn using cumulative evidence from multiple independent studies. However, applying significance thresholds makes cumulative knowledge unreliable. One reason is that with anything but ideal statistical power, significant effect sizes will be biased upwards. Interpreting inflated significant results while ignoring nonsignificant results will thus lead to wrong conclusions. But current incentives to hunt for significance lead to selective reporting and to publication bias against nonsignificant findings. Data dredging, p-hacking, and publication bias should be addressed by removing fixed significance thresholds. Consistent with the recommendations of the late Ronald Fisher, p-values should be interpreted as graded measures of the strength of evidence against the null hypothesis. Also larger p-values offer some evidence against the null hypothesis, and they cannot be interpreted as supporting the null hypothesis, falsely concluding that ‘there is no effect’. Information on possible true effect sizes that are compatible with the data must be obtained from the point estimate, e.g., from a sample average, and from the interval estimate, such as a confidence interval. We review how confusion about interpretation of larger p-values can be traced back to historical disputes among the founders of modern statistics. We further discuss potential arguments against removing significance thresholds, for example that decision rules should rather be more stringent, that sample sizes could decrease, or that p-values should better be completely abandoned. We conclude that whatever method of statistical inference we use, dichotomous threshold thinking must give way to non-automated informed judgment.

Subject:
Mathematics
Statistics and Probability
Material Type:
Reading
Provider:
PeerJ
Author:
Fränzi Korner-Nievergelt
Tobias Roth
Valentin Amrhein
Date Added:
08/07/2020