Unit Summary This unit on metabolic reactions in the human body starts …
Unit Summary This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why. Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected. This unit builds towards the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-LS1-3, MS-LS1-5, MS-LS1-7, MS-PS1-1, MS-PS1-2. The OpenSciEd units are designed for hands-on learning, and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list. Additional Unit InformationNext Generation Science Standards Addressed in this UnitPerformance ExpectationsThis unit builds toward the following NGSS Performance Expectations (PEs):
This unit on metabolic reactions in the human body starts out with …
This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor.
Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people.
Why are living things different from one another? This unit on genetics …
Why are living things different from one another? This unit on genetics starts out with students noticing and wondering about photos of two cattle, one of whom has significantly more muscle than the other. Students figure out how muscles typically develop as a result of environmental factors such as exercise and diet. Then, they work with cattle pedigrees, including data about chromosomes and proteins, to figure out genetic factors that influence the heavily muscled phenotype and explore selective breeding in cattle.
This unit is part of the OpenSciEd core instructional materials for middle school.
Antibiotics save people’s lives...and make bacteria stronger and more likely to kill …
Antibiotics save people’s lives...and make bacteria stronger and more likely to kill us. What is the best practice to balance these conflicting issues? In this problem-based learning module, the students will be evaluating real-life medical situations in conjunction with actual staff at those institutions and offering action plans to be ‘implemented’ there. In order to accomplish this, the science unit will be interlocking with social studies and a language arts unit that will have them identifying target audiences and sculpting a way to present their findings. This unit has the potential to be a full problem-based unit as well as highly interdisciplinary--it’s connected to full units in social studies and language arts which stand alone but can be fully integrated if desired.
The purpose of this resource is to observe when selected bird species …
The purpose of this resource is to observe when selected bird species first arrive at your study site, and to count the numbers until few or none of these birds are seen. Students select a common and easily identifiable bird species in their region and observe when the bird species first arrives. Students use binoculars or telescopes to scan a study site and count how many they see. They continue to observe every other day until few or none of the selected species can be seen.
The purpose of this resource is to observe budburst on selected trees …
The purpose of this resource is to observe budburst on selected trees at a Land Cover or Phenology Site. All students will learn about hummingbird natural history and ecology. Students will learn how to identify and age male and female Ruby-throated Hummingbirds and to observe migration and feeding behavior. Students will learn how to make connections among hummingbird behavior and weather, climate, food availability, seasonality, photoperiod (day length), and other environmental factors.
Two lessons and their associated activities explore cellular respiration and population growth …
Two lessons and their associated activities explore cellular respiration and population growth in yeasts. Yeast cells are readily obtained and behave predictably, so they are very appropriate to use in middle school classrooms. In the first lesson, students are introduced to yeast respiration through its role in the production of bread and alcoholic beverages. A discussion of the effects of alcohol on the human body is used both as an attention-getting device, and as a means to convey important information at an impressionable age. In the associated activity, students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Based on questions that arise from this activity, in the second lesson students work in small groups as they design and execute their own experiments to determine how environmental factors affect yeast population growth.
In this activity, students examine how to grow plants the most efficiently. …
In this activity, students examine how to grow plants the most efficiently. They imagine that they are designing a biofuels production facility and need to know how to efficiently grow plants to use in this facility. As a means of solving this design problem, they plan a scientific experiment in which they investigate how a given variable (of their choice) affects plant growth. They then make predictions about the outcomes and record their observations after two weeks regarding the condition of the plants' stem, leaves and roots. They use these observations to guide their solution to the engineering design problem. The biological processes of photosynthesis and transpiration are briefly explained to help students make informed decisions about planning and interpreting their investigation and its results.
Students design and conduct experiments to determine what environmental factors favor decomposition …
Students design and conduct experiments to determine what environmental factors favor decomposition by soil microbes. They use chunks of carrots for the materials to be decomposed, and their experiments are carried out in plastic bags filled with dirt. Every few days students remove the carrots from the dirt and weigh them. Depending on the experimental conditions, after a few weeks most of the carrots will have decomposed completely.
This book is intended for use by future teachers, written from the …
This book is intended for use by future teachers, written from the perspective of students who have taken Science Methods II. The student authors gathered and created resources to help prospective elementary cience teachers better understand science and feel confident in your abilities as a future teacher. This book is divided into five parts which align with the Science Methods II course:
Physics Space Science Earth Science Climate Science Course Materials and Pedagogy
Within each part, the material is broken down into smaller chapters. Here you will find written explanations, video links, glossary terms, key takeaways, and practice quizzes to help you understand the material. This book is designed to be a flexible resource; use it as much or as little as you need throughout the course.
Sign up for a free account on the Gizmo website (https://www.explorelearning.com/index.cfm?method=Controller.dspFreeAccount) for …
Sign up for a free account on the Gizmo website (https://www.explorelearning.com/index.cfm?method=Controller.dspFreeAccount) for free access to two simulations that were collaboratively developed by the teams at Explore Learning and the Wisconsin Fast Plants Program of the University of Wisconsin-Madison. These simulations replace those previously available on our website that were developed nearly two decades ago and no longer function on modern operating systems. Fast Plants Gizmos were created as a collaboration between ExploreLearning and the Wisconsin Fast Plants Program of the University of Wisconsin-Madison. They weredesigned to support many of the experiments that students can do using Fast Plants seeds and plants. By using these Gizmos in combination with firsthand experiences growing Fast Plants, students can compare simulated growth, development and reproduction with observations of living Fast Plants. In addition, the Gizmos genetic simulation makes it possible for students to gather data from a significantly larger plant population than is typically grown in classrooms. These Gizmos also stand alone, supporting topics both in plant life cycles and Mendelian genetics and can be used by any student. Simulation, Simulations, Genetics, Inheritance
In this 7th grade science lesson, students review the structures and processes …
In this 7th grade science lesson, students review the structures and processes that allow flowering plants to reproduce, and then pick a flower from the garden to dissect and diagram.
The purpose of this resource is to observe plant green-down and report …
The purpose of this resource is to observe plant green-down and report greendown data to help validate estimates of the end of the plant growing season. Students monitor the change in color of selected leaves of trees, shrubs or grasses.
The purpose of this resource is to observe plant green-up and report …
The purpose of this resource is to observe plant green-up and report data that will be used by scientists to validate satellite estimates of the beginning of the plant growing season. Students monitor budburst and growth of leaves of selected trees, shrubs, or grasses. Species chosen should be native, deciduous, and dominant in your area.
Students discover how tiny microscopic plants can remove nutrients from polluted water. …
Students discover how tiny microscopic plants can remove nutrients from polluted water. They also learn how to engineer a system to remove pollutants faster and faster by changing the environment for the algae.
Students conduct experiments to determine what environmental factors favor decomposition by soil …
Students conduct experiments to determine what environmental factors favor decomposition by soil microbes. They use chunks of carrots for the materials to be decomposed, and their experiments are carried out in plastic bags filled with dirt. Every few days students remove the carrots from the dirt and weigh them. Depending on the experimental conditions, after a few weeks most of the carrots have decomposed completely.
Students set up and run the experiments they designed in the Population …
Students set up and run the experiments they designed in the Population Growth in Yeasts associated lesson, using simple yeast-molasses cultures in test tubes. Population growth is indicated by the amount of respiration occurring in the cultures, which in turn is indicated by the growth of carbon dioxide bubbles trapped within the culture tubes. Using this method, students test for a variety of environmental influences, such as temperature, food supply and pH.
This resource provides guidance on site selection for the GLOBE Atmosphere data …
This resource provides guidance on site selection for the GLOBE Atmosphere data collection protocols. Instructions for building an instrument shelter, a snowboard, an ozone measurement station, and a wind direction instrument are included.
This investigation begins with a phenomenon that is evidenced in most every …
This investigation begins with a phenomenon that is evidenced in most every produce aisle: Many of the vegetables that botanists classify as Brassica look and taste different. This investigation aligns with middle and high school Next Generation Science Standards as well as with agricultural science Plant Career Path Standards. Provided as an Open Source Lesson in Gather-Reason-Communicate format, this investigation supports teachers as students learn about the life cycle of flowering plants, how environmental and genetic factors influence an organisms's growth, how humans influence plants through plant breeding, and how scientists can use classification as a tool for understanding relatedness among organisms. This includes a lesson plan and supporting resources including videos, an interview, readings, and protocols.
In this problem-based learning module, students will investigate the importance of genetic …
In this problem-based learning module, students will investigate the importance of genetic diversity will be explored by examining several case studies revealing consequences that can occur in individuals within a limited gene pool and how a variety of genes can lead to the survival of a species. Students will be able to create and interpret information from pedigree charts.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.