All resources in Oregon Mathematics

Dilating a Line

(View Complete Item Description)

This task gives students the opportunity to verify that a dilation takes a line that does not pass through the center to a line parallel to the original line, and to verify that a dilation of a line segment (whether it passes through the center or not) is longer or shorter by the scale factor.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Are They Similar?

(View Complete Item Description)

In this problem, students are given a picture of two triangles that appear to be similar, but whose similarity cannot be proven without further information. Asking students to provide a sequence of similarity transformations that maps one triangle to the other focuses them on the work of standard G-SRT.2, using the definition of similarity in terms of similarity transformations.

Material Type: Activity/Lab

Author: Illustrative Mathematics

G-CO, G-SRT Congruence of parallelograms

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Rhianna has learned the SSS and SAS congruence tests for triangles and she wonders if these tests might work for parallelograms. Suppose $ABCD$ and $EF...

Material Type: Activity/Lab

Author: Illustrative Mathematics

G-GPE, G-SRT Finding triangle coordinates

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a picture of a triangle $ABC$ on the coordinate grid. The red lines are parallel to $\overleftrightarrow{BC}$: Suppose $P = (1.2,1.6)$, $Q = (...

Material Type: Activity/Lab

Author: Illustrative Mathematics

8.G, G-SRT Points from Directions

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Point $B$ is due east of point $A$. Point $C$ is due north of point $B$. The distance between points $A$ and $C$ is $10\sqrt 2$ meters, and $\angle BAC...

Material Type: Activity/Lab

Author: Illustrative Mathematics

G-GPE Equal Area Triangles on the Same Base II

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Given a line segment with end points $A=(0,0)$ and $B=(6,8)$, find all points $C=(x, y)$ such that the triangle with vertices $A$, $B$, $C$ has an area...

Material Type: Activity/Lab

Author: Illustrative Mathematics

G-GPE Equal Area Triangles on the Same Base I

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: On graph paper, sketch a line segment with end points $A=(0,2)$ and $B=(0,6)$. Plot all points $C=(x,y)$ such that the triangle ABC has an area of 6 sq...

Material Type: Activity/Lab

Author: Illustrative Mathematics

G-CO Defining Parallel Lines

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Alex and his friends are studying for a geometry test and one of the main topics covered is parallel lines. They each write down what they think it mea...

Material Type: Activity/Lab

Author: Illustrative Mathematics

G-CO Defining Perpendicular Lines

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Three students have proposed these ways to describe when two lines $\ell$ and $m$ are perpendicular: $\ell$ and $m$ are perpendicular if they meet at o...

Material Type: Activity/Lab

Author: Illustrative Mathematics

G-CO Properties of Congruent Triangles

(View Complete Item Description)

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a picture of two triangles: Suppose there is a sequence of rigid motions which maps $\triangle ABC$ to $\triangle DEF$. Explain why correspond...

Material Type: Activity/Lab

Author: Illustrative Mathematics

Why Does SAS Work?

(View Complete Item Description)

For these particular triangles, three reflections were necessary to express how to move from ABC to DEF. Sometimes, however, one reflection or two reflections will suffice. Since any rigid motion will take triangle ABC to a congruent triangle DEF, this shows the remarkable fact that any rigid motion of the plane can be expressed as one reflection, a composition of two reflections, or a composition of three reflections.

Material Type: Activity/Lab

Author: Illustrative Mathematics

Why Does SSS Work?

(View Complete Item Description)

This particular sequence of transformations which exhibits a congruency between triangles ABC and DEF used one translation, one rotation, and one reflection. There are many other ways in which to exhibit the congruency and students and teachers are encouraged to explore the different possibilities.

Material Type: Activity/Lab

Author: Illustrative Mathematics