Updating search results...

High School Science for Remote Learning

High-quality high school science resources for distance learning from AstroEdu, MIT Blossoms, NGSS@NSTA, Phet Interactives, and TeachEngineering. You can refine the collections by selecting different fields, such as material types, on the left side of the page, under Filter Resources.

913 affiliated resources

Search Resources

View
Selected filters:
Surfactants: Helping Molecules Get Along
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basics of molecules and how they interact with each other. They learn about the idea of polar and non-polar molecules and how they act with other fluids and surfaces. Students acquire a conceptual understanding of surfactant molecules and how they work on a molecular level. They also learn of the importance of surfactants, such as soaps, and their use in everyday life. Through associated activities, students explore how surfactant molecules are able to bring together two substances that typically do not mix, such as oil and water. This lesson and its associated activities are easily scalable for grades 3-12.

Subject:
Applied Science
Education
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ryan Cates
Date Added:
09/18/2014
Surgical Device Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit focuses on teaching students about the many aspects of biomedical engineering (BME). Students come to see that BME is a broad field that relies on concepts from many engineering disciplines. They also begin to understand some of the special considerations that must be made when dealing with the human body. Activities and class discussions encourage students to think as engineers to come up with their own solutions to some of medical challenges that have been solved throughout the history of BME. Class time iincludes brainstorming and presenting ideas to the class for discussion. Specific activities include examination of the material properties and functions of surgical instruments and prosthetics, a simulation of the training experience of a surgical resident, and an investigation of the properties of fluid flow in vascular tissue.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alice Hammer
Date Added:
09/18/2014
Sustainable Energy: Can Water be the Future Fuel?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main objective of this video lesson is to bring the students' attention to the importance of basic and natural sciences in our lives. The lesson will introduce a topic (sustainable energy) that is related mainly to chemistry and is not usually covered directly in a high school curriculum. We hope that this lesson will show students how important and useful the natural and basic sciences are not only for our daily lives, but also for sustainable development. The lesson will present creative and challenging ideas on the topic of alternative energies. It is hoped that students will be inspired by the introduction of these ideas, and that they will develop the confidence to come up with creative ideas themselves. Background for this lesson is based on fundamental concepts in chemistry (mainly), biology, physics and environmental science.

Subject:
Applied Science
Chemistry
Environmental Science
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Ahmad Al-Ajlouni
Date Added:
05/07/2015
Swamp Cooler
Read the Fine Print
Educational Use
Rating
0.0 stars

Using a household fan, cardboard box and paper towels, student teams design and build their own evaporative cooler prototype devices. They learn about the process that cools water during the evaporation of water. They make calculations to determine a room's cooling load, and thus determine the swamp cooler size. This activity adds to students' understanding of the behind-the-scenes mechanical devices that condition and move air within homes and buildings for human health and comfort.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Swing in Time
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine the motion of pendulums and come to understand that the longer the string of the pendulum, the fewer the number of swings in a given time interval. They see that changing the weight on the pendulum does not have an effect on the period. They also observe that changing the angle of release of the pendulum has negligible effect upon the period.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Swinging Pendulum
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity demonstrates how potential energy (PE) can be converted to kinetic energy (KE) and back again. Given a pendulum height, students calculate and predict how fast the pendulum will swing by understanding conservation of energy and using the equations for PE and KE. The equations are justified as students experimentally measure the speed of the pendulum and compare theory with reality.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Swinging Pendulum (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity shows students the engineering importance of understanding the laws of mechanical energy. More specifically, it demonstrates how potential energy can be converted to kinetic energy and back again. Given a pendulum height, students calculate and predict how fast the pendulum will swing by using the equations for potential and kinetic energy. The equations will be justified as students experimentally measure the speed of the pendulum and compare theory with reality.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Swinging on a String
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how pendulums work and why they are useful in everyday applications. In a hands-on activity, they experiment with string length, pendulum weight and angle of release. In an associated literacy activity, students explore the mechanical concept of rhythm, based on the principle of oscillation, in a broader biological and cultural context in dance and sports, poetry and other literary forms, and communication in general.

Subject:
Applied Science
Engineering
History
History, Law, Politics
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
Swinging with Style
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experientially learn about the characteristics of a simple physics phenomenon the pendulum by riding on playground swings. They use pendulum terms and a timer to experiment with swing variables. They extend their knowledge by following the steps of the engineering design process to design timekeeping devices powered by human swinging.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ashleigh Bailey
Denise W. Carlson
Malinda S. Zarske
Megan Podlogar
Date Added:
10/14/2015
System of Equations - PhET Interactive Simulations
Unrestricted Use
CC BY
Rating
0.0 stars

Explore what it means for a mathematical statement to be balanced or unbalanced by interacting with integers and variables on a balance. Find multiple ways to balance x and y to build a system of equations.

Subject:
Mathematics
Material Type:
Activity/Lab
Interactive
Lesson
Lesson Plan
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Amanda Mcgarry
Diana L Pez
PhET at University of Colorado
Date Added:
03/16/2021
Taking Walks, Delivering Mail: An Introduction to Graph Theory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video presents an introduction to graph theory through two fun, puzzle-like problems: ''The Seven Bridges of Konigsberg'' and ''The Chinese Postman Problem''. Any high school student in a college-preparatory math class should be able to participate in this lesson. Materials needed include: pen and paper for the students; if possible, printed-out copies of the graphs and image that are used in the module; and a blackboard or equivalent. During this video lesson, students will learn graph theory by finding a route through a city/town/village without crossing the same path twice. They will also learn to determine the length of the shortest route that covers all the roads in a city/town/village. To achieve these two learning objectives, they will use nodes and arcs to create a graph and represent a real problem.

Subject:
Education
Mathematics
Measurement and Data
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
BLOSSOMS
Karima R. Nigmatulina
Date Added:
06/02/2012
Tell Me Doc: Will I Get Cancer?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the unit challenge discovering a new way to assess a person's risk of breast cancer. Solving this challenge requires knowledge of refraction and the properties of light. After being introduced to the challenge question, students generate ideas related to solving the challenge, and then read a short online article on optical biosensors that guides their research towards solving the problem.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
Tell Me the Odds (of Cancer)
Read the Fine Print
Educational Use
Rating
0.0 stars

Through four lessons and three hands-on activities, students learn the concepts of refraction and interference in order to solve an engineering challenge: "In 2013, actress Angelina Jolie underwent a double mastectomy, not because she had been diagnosed with breast cancer, but merely to lower her cancer risk. But what if she never inherited the gene(s) that are linked to breast cancer and endured surgery unnecessarily? Can we create a new method of assessing people's genetic risks of breast cancer that is both efficient and cost-effective?" While pursuing a solution to this challenge, students learn about some high-tech materials and delve into the properties of light, including the equations of refraction (index of refraction, Snell's law). Students ultimately propose a method to detect cancer-causing genes by applying the refraction of light in a porous film in the form of an optical biosensor. Investigating this challenge question through this unit is designed for an honors or AP level physics class, although it could be modified for conceptual physics.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
Date Added:
09/18/2014
The Temperature Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how the efficiency of a solar photovoltaic (PV) panel is affected by the ambient temperature. They learn how engineers predict the power output of a PV panel at different temperatures and examine some real-world engineering applications used to control the temperature of PV panels.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Eszter Horanyi
Jack Baum
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Test-a-Beam
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure different types of small-sized beams and calculate their respective moments of inertia. They compare the calculations to how much the beams bend when loads are placed on them, gaining insight into the ideal geometry and material for load-bearing beams.

Subject:
Applied Science
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Date Added:
09/18/2014
Test and Treat Before You Drink
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about water quality testing and basic water treatment processes and technology options. Biological, physical and chemical treatment processes are addressed, as well as physical and biological water quality testing, including testing for bacteria such as E. coli.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christie Chatterley
Denise W. Carlson
Janet Yowell
Kate Beggs
Malinda Schaefer Zarske
Date Added:
02/17/2017
Testing the Edges
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain experience using the software/systems (engineering) design process, specifically focusing on the testing phase. This problem-based learning activity uses the design process to solve open-ended challenges. In addition to learning about test cases for testing software, students utilize the design process as a vehicle to work through a problem and arrive at a solution.

Subject:
Applied Science
Computing and Information
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Janet Yowell
Ryan Stejskal
Date Added:
09/18/2014
Testing with JUnit
Read the Fine Print
Educational Use
Rating
0.0 stars

JUnit is a testing method that is included with NetBeans (Java) installs or can be downloaded from the web and included in the Java build. In this activity, students design tests for a provided Java class before the class methods are constructed using a process called test-driven development. To create a design, the software/system design process, which is a specific case of the engineering design process, is followed. After students create a design, it is implemented and tested and if necessary, the design undergoes editing to make sure it functions by testing the Java class correctly. To conclude the activity, students write the methods in the Java class using their tests to debug the program.

Subject:
Applied Science
Computing and Information
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Ryan Stejskal
Date Added:
09/18/2014
There Will Be Drugs
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the engineering design process as they design, fabricate, test and redesign their own methods for encapsulation of a (hypothetical) new miracle drug. As if they are engineers, teams make large-size prototypes to test proof of concept. They use household materials (tape, paper towels, plastic wrap, weed-barrier fabric, glues, etc.) to attach a coating to a porous "shell" (a perforated plastic Wiffle® ball) containing the medicine (colored drink mix powder). The objective is to delay the drug release by a certain time and have a long release duration—patterned after the timed release requirements of many real-world pharmaceuticals that are released from a polymer shell via diffusion in the body. Guided by a worksheet, teams go through at least three design/test iterations, aiming to achieve a solution close to the target time release constraints.

Subject:
Biology
Career and Technical Education
Chemistry
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrea Lee
Megan Ketchum
Date Added:
02/17/2017