Updating search results...

High School Science for Remote Learning

High-quality high school science resources for distance learning from AstroEdu, MIT Blossoms, NGSS@NSTA, Phet Interactives, and TeachEngineering. You can refine the collections by selecting different fields, such as material types, on the left side of the page, under Filter Resources.

913 affiliated resources

Search Resources

View
Selected filters:
Lunar Lander
Unrestricted Use
CC BY
Rating
0.0 stars

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Subject:
Astronomy
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Date Added:
01/26/2007
Lunar Lander (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Subject:
Astronomy
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Date Added:
06/02/2010
The Lunch-Bot
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are challenged to design and program Arduino-controlled robots that behave like simple versions of the automated guided vehicles engineers design for real-world applications. Using Arduino microcontroller boards, infrared (IR) sensors, servomotors, attachable wheels and plastic containers (for the robot frame), they make "Lunch-Bots." Teams program the robots to meet the project constraints—to follow a line of reflective tape, make turns and stop at a designated spot to deliver a package, such as a sandwich or pizza slice. They read and interpret analog voltages from IR sensors, compare how infrared reflects differently off different materials, and write Arduino programs that use IR sensor inputs to control the servomotors. Through the process, students experience the entire engineering design process. Pre/post-quizzes and coding help documents are provided.

Subject:
Applied Science
Career and Technical Education
Computer Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mark Supal
Date Added:
02/17/2017
MIT BLOSSOMS
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

MIT BLOSSOMS is not a single resource. It is a video repository of more than 120 math and science lessons for high school classes.

Subject:
Applied Science
Mathematics
Material Type:
Lesson Plan
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Educators from the U.S. and from partnering BLOSSOMS countries.
Date Added:
02/03/2015
MRI Safety Grand Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given an engineering challenge: A nearby hospital has just installed a new magnetic resonance imaging facility that has the capacity to make 3D images of the brain and other body parts by exposing patients to a strong magnetic field. The hospital wishes for its entire staff to have a clear understanding of the risks involved in working near a strong magnetic field and a basic understanding of why those risks occur. Your task is to develop a presentation or pamphlet explaining the risks, the physics behind those risks, and the safety precautions to be taken by all staff members. This 10-lesson/4-activity unit was designed to provide hands-on activities to teach end-of-year electricity and magnetism topics to a first-year accelerated or AP physics class. Students learn about and then apply the following science concepts to solve the challenge: magnetic force, magnetic moments and torque, the Biot-Savart law, Ampere's law and Faraday's law. This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Machines and Tools, Part II
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students gain first-hand experience with the mechanical advantage of pulleys. Students are given the challenge of helping save a whale by moving it from an aquarium back to its natural habitat into the ocean. They set up different pulley systems, compare the theoretical and actual mechanical advantage of each and discuss their recommendations as a class.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jake Lewis
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
10/14/2015
Magic Magnetic Fluid
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to a unique fluid ferrofluids the shape of which can be influenced by magnetic fields. This activity supplements traditional magnetism activities and offers comparisons between large-scale materials and nanomaterials.Students are introduced to the concepts of magnetism, surfactants and nanotechnology by relating movie magic to practical science. Students observe ferrofluid properties as a stand-alone fluid and under an imposed magnetic field. They learn about the components of ferrofluids and their functionality as they create shapes using magnetically controlled ferrofluids and create their masterpieces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Marc Bird
Sara Castillo
Date Added:
09/18/2014
Magical Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students watch video clips from the October Sky and Harry Potter and the Sorcerer's Stone movies to see examples of projectile motion. Then they explore the relationships between displacement, velocity and acceleration, and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on "The Science Behind Harry Potter" theme. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
The Magician's Catapult
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students reinforce their understanding of compound machines by building a catapult. This compound machine consists of a lever and a wheel-and-axel. Catapults have been designed by engineers for a variety of purposes from lifting boulders into the air for warfare to human beings for entertainment; the projectiles in this activity are grapes for a magic act. Given the building materials, students design and build their catapult to launch a grape a certain distance.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Malinda Schaefer Zarske
Michael J. Bendewald
Date Added:
10/14/2015
Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Magnetic Fields Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Magnetic Fluids
Read the Fine Print
Educational Use
Rating
0.0 stars

In this fun, engaging activity, students are introduced to a unique type of fluid ferrofluids whose shape can be influenced by magnetic fields! Students act as materials engineers and create their own ferrofluids. They are challenged to make magnetic ink out of ferrofluids and test their creations to see if they work. Concurrently, they learn more about magnetism, surfactants and nanotechnology. As they observe fluid properties as a standalone-fluid and under an imposed magnetic field, they come to understand the components of ferrofluids and their functionality.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Magnetic Launcher
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore electromagnetism and engineering concepts using optimization techniques to design an efficient magnetic launcher. Groups start by algebraically solving the equations of motion for the velocity at the time when a projectile leaves a launcher. Then they test three different launchers, in which the number of coils used is different, measuring the range and comparing the three designs. Based on these observations, students record similarities and differences and hypothesize on the underling physics. They are introduced to Faraday's law and Lenz's law to explain the physics behind the launcher. Students brainstorm how these principals might be applied to real-world engineering problems.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Erik Wemlinger
Date Added:
09/18/2014
Magnetic Materials
Read the Fine Print
Educational Use
Rating
0.0 stars

Students begin working on the grand challenge of the unit by thinking about the nature of metals and quick, cost-effective means of separating different metals, especially steel. They arrive at the idea, with the help of input from relevant sources, to use magnets, but first they must determine if the magnets can indeed isolate only the steel.

Subject:
Applied Science
Engineering
Physical Science
Physics
Technology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Magnetic Resonance Imaging
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Magnetic or Not?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the basic magnetic properties of different substances, particularly aluminum and steel. There is a common misconception that magnets attract all metals, largely due to the ubiquity of steel in metal products. The activity provides students the chance to predict, whether or not a magnet will attract specific items and then test their predictions. Ultimately, students should arrive at the conclusion that iron (and nickel if available) is the only magnetic metal.

Subject:
Applied Science
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Make That Invisible! Refractive Index Matching
Read the Fine Print
Educational Use
Rating
0.0 stars

Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marjorie Hernandez
Date Added:
09/18/2014
Make Your Own Recycled Paper
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how paper is made. Working together, student teams make their own paper. This activity introduces students to recycling; what it is, its value and benefits, and how it affects their lives.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Making Decisions: Packaging and the Environment
Read the Fine Print
Educational Use
Rating
0.0 stars

Students redesign and justify the packaging used in consumer products. Design criteria include reducing the amount of packaging material by 25%.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
K. M. Samuelson
Martha Cyr
Date Added:
09/18/2014