Updating search results...

High School Science for Remote Learning

High-quality high school science resources for distance learning from AstroEdu, MIT Blossoms, NGSS@NSTA, Phet Interactives, and TeachEngineering. You can refine the collections by selecting different fields, such as material types, on the left side of the page, under Filter Resources.

913 affiliated resources

Search Resources

View
Selected filters:
Exploring Capillary Action
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe multiple examples of capillary action. First they observe the shape of a glass-water meniscus and explain its shape in terms of the adhesive attraction of the water to the glass. Then they study capillary tubes and observe water climbing due to capillary action in the glass tubes. Finally, students experience a real-world application of capillary action by designing and using "capillary siphons" to filter water.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Exploring the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Date Added:
09/18/2014
Exploring the Lotus Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students test and observe the "self-cleaning" lotus effect using a lotus leaf and cloth treated with a synthetic lotus-like superhydrophobic coating. They also observe the Wenzel and Cassie Baxter wetting states by creating and manipulating condensation droplets on the leaf surface. They consider the real-life engineering applications for these amazing water-repellent and self-cleaning properties.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Fabulous Fractals and Difference Equations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video introduces students to the world of Fractal Geometry through the use of difference equations. As a prerequisite to this lesson, students would need two years of high school algebra (comfort with single variable equations) and motivation to learn basic complex arithmetic. Ms. Zager has included a complete introductory tutorial on complex arithmetic with homework assignments downloadable here. Also downloadable are some supplemental challenge problems. Time required to complete the core lesson is approximately one hour, and materials needed include a blackboard/whiteboard as well as space for students to work in small groups. During the in-class portions of this interactive lesson, students will brainstorm on the outcome of the chaos game and practice calculating trajectories of different equations.

Subject:
Geometry
Mathematics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Laura Zager
Date Added:
07/12/2014
Factors Affecting Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

Based on what they have already learned about friction, students formulate hypotheses concerning the effects of weight and contact area on the amount of friction between two surfaces. In the Associated Activities (Does Weight Matter? and Does Area Matter?), students design and conduct simple experiments to test their hypotheses, using procedures similar to those used in the previous lesson (Discovering Friction). An analysis of their data will reveal the importance of weight to normal friction (the friction that occurs as a result of surface roughness) and the importance of surface area to the friction that occurs between smooth surfaces due to molecular attraction. Based on their data, students will also be able to calculate coefficients of friction for the materials tested, and compare these to published values for various materials.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Fantastic Factorials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The aim of this video lesson is to introduce the concept of factorials, and to show students that everyday events in their lives have so much to do with factorials - even if they do not realize it! During this video, students will learn about the large number of ways to arrange people and objects using the mathematical concept of factorials. This video lesson will begin with a story of a family vacation to Pulau Pinang, an island located 330 km from the city of Kuala Lumpur in Malaysia. In this video, lessons about using factorials are demonstrated through several challenges this family encounters during their vacation. A prerequisite for this lesson is knowledge of the multiplication rule of counting. During the classroom activities, students are asked to carry out collaborative learning challenges in groups of 6. These activities require students to arrange cards to show different factorial arrangements that can be made. The materials needed for this activity are very simple. We only need to provide a few pieces of blank or colored paper for each student. The lesson will take about 40 – 50 minutes to complete.

Subject:
Mathematics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Bashirah Seleman
Date Added:
02/13/2015
Faraday's Electromagnetic Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
10/22/2006
Feel Better Faster: All about Flow Rate
Read the Fine Print
Educational Use
Rating
0.0 stars

All of us have felt sick at some point in our lives. Many times, we find ourselves asking, "What is the quickest way that I can start to feel better?" During this two-lesson unit, students study that question and determine which form of medicine delivery (pill, liquid, injection/shot) offers the fastest relief. This challenge question serves as a real-world context for learning all about flow rates. Students study how long various prescription methods take to introduce chemicals into our blood streams, as well as use flow rate to determine how increasing a person's heart rate can theoretically make medicines work more quickly. Students are introduced to engineering devices that simulate what occurs during the distribution of antibiotic cells in the body.

Subject:
Applied Science
Engineering
Life Science
Mathematics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michelle Woods
Date Added:
09/18/2014
Feel the Stress
Read the Fine Print
Educational Use
Rating
0.0 stars

Working individually or in groups, students explore the concept of stress (compression) through physical experience and math. They discover why it hurts more to poke themselves with mechanical pencil lead than with an eraser. Then they prove why this is so by using the basic equation for stress and applying the concepts to real engineering problems.

Subject:
Applied Science
Engineering
Geometry
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeffrey Mitchell
Date Added:
09/18/2014
The Fibre Optic Cable Class
Unrestricted Use
CC BY
Rating
0.0 stars

This activity is an interactive “out-of-the-seat” demo that allows the students to become involved in learning about fibre optic cables by imitating the way that one basically functions. While enjoying the physicality of the demo the children will pick up basic details of light, reflection, optical properties, and applications to technology. Additionally, the activity will go into details of how fibre optics are used in astronomy technology and how it is used to improve our understanding of the universe. An emphasis should be placed on asking direct questions to the children about how these concepts can influence technology, astronomy, and our world to reinforce the concepts that they are learning about.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Amee Hennig
Date Added:
02/06/2015
Filtering: Extracting What We Want from What We Have
Read the Fine Print
Educational Use
Rating
0.0 stars

Filtering is the process of removing or separating the unwanted part of a mixture. In signal processing, filtering is specifically used to remove or extract part of a signal, and this can be accomplished using an analog circuit or a digital device (such as a computer). In this lesson, students learn the impact filtering can have on different types of signals, the concepts of frequency and spectrum, and the connections these topics have to real-world signals such as musical signals. Students also learn the roles that these concepts play in designing different types of filters. The lesson content prepares students for the associated activity in which they use an online demo and a variety of filters to identify the message in a distress signal heavily corrupted by noise.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dehui Yang
Kyle R. Feaster
Michael B. Wakin
Date Added:
10/14/2015
Filtering: Removing Noise from a Distress Signal
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basic principles of filtering as well as how to apply digital filters to extract part of an audio signal by using an interactive online demo website. They apply this knowledge in order to isolate a voice recording from a heavily noise-contaminated sound wave. After completing the associated lesson, expect students to be able to attempt (and many successfully finish) this activity with minimal help from the instructor.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ayoade Adekola
Chris Light
Connor McKay
Dehui Yang
Kyle R. Feaster
Michael B. Wakin
Date Added:
10/14/2015
Flame Test: Red, Green, Blue, Violet?
Read the Fine Print
Educational Use
Rating
0.0 stars

To become familiar with the transfer of energy in the form of quantum, students perform flame tests, which is one way chemical engineers identify elements by observing the color emitted when placed in a flame. After calculating and then preparing specific molarity solutions of strontium chloride, copper II chloride and potassium chloride (good practice!), students observe the distinct colors each solution produces when placed in a flame, determine the visible light wavelength, and apply that data to identify the metal in a mystery solution. They also calculate the frequency of energy for the solutions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
The Flaws of Averages
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video presents an introduction to the Flaws of Averages using three exciting examples: the ''crossing of the river'' example, the ''cookie'' example, and the ''dance class'' example. Averages are often worthwhile representations of a set of data by a single descriptive number. The objective of this module, however, is to simply point out a few pitfalls that could arise if one is not attentive to details when calculating and interpreting averages. The essential prerequisite knowledge for this video lesson is the ability to calculate an average from a set of numbers. During this video lesson, students will learn about three flaws of averages: (1) The average is not always a good description of the actual situation, (2) The function of the average is not always the same as the average of the function, and (3) The average depends on your perspective. To convey these concepts, the students are presented with the three real world examples mentioned above.

Subject:
Education
Mathematics
Numbers and Operations
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Daniel Livengood
MIT BLOSSOMS
Rhonda Jordan
Date Added:
06/02/2012
Floaters and Sinkers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the important concept of density with a focus is on the more easily understood densities of solids. Students use different methods to determine the densities of solid objects, including water displacement to determine volumes of irregularly-shaped objects. By comparing densities of various solids to the density of water, and by considering the behavior of different solids when placed in water, students conclude that ordinarily, objects with densities greater than water sink, while those with densities less than water float. Then they explore the principle of buoyancy, and through further experimentation arrive at Archimedes' principle that a floating object displaces a mass of water equal to its own mass. Students may be surprised to discover that a floating object displaces more water than a sinking object of the same volume.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Floaters and Sinkers: Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the important concept of density. The focus is on the more easily understood densities of solids, but students can also explore the densities of liquids and gases. Students devise methods to determine the densities of solid objects, including the method of water displacement to determine volumes of irregularly-shaped objects. By comparing densities of various solids to the density of water, and by considering the behavior of different solids when placed in water, students conclude that ordinarily, objects with densities greater than water will sink, while those with densities less than water will float. Density is an important material property for engineers to understand.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Floating and Falling Flows
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover fluid dynamics related to buoyancy through experimentation and optional photography. Using one set of fluids, they make light fluids rise through denser fluids. Using another set, they make dense fluids sink through a lighter fluid. In both cases, they see and record beautiful fluid motion. Activities are also suitable as class demonstrations. The natural beauty of fluid flow opens the door to seeing the beauty of physics in general.

Subject:
Applied Science
Arts and Humanities
Education
Engineering
Physical Science
Physics
Visual Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cody Taylor
Denise Carlson
Gala Camacho
Jean Hertzberg
Malinda Schaefer Zarske
Date Added:
09/18/2014