Abstract Training materials. The DATUM for Health training programme covers both generic …
Abstract Training materials. The DATUM for Health training programme covers both generic and discipline-specific issues, focusing on the management of qualitative, unstructured data, and is suitable for students at any stage of their PhD. It aims to provide students with the knowledge to manage their research data at every stage in the data lifecycle, from creation to final storage or destruction. They learn how to use their data more effectively and efficiently, how to store and destroy it securely, and how to make it available to a wider audience to increase its use, value and impact.
•Understand what metadata is and how it relates to DCAT• Learn about …
•Understand what metadata is and how it relates to DCAT• Learn about the history and objectives of DCAT• Understand the basic model of DCAT• See some examples of DCAT entities
•Understand what Metadata is and how it relates to DCAT• Learn about …
•Understand what Metadata is and how it relates to DCAT• Learn about the history and objectives of DCAT• Understand the basic Model of DCAT• See some examples of DCAT Entities• See some examples of DCAT Spatial & Temporal Properties
Written primarily for professionals in library and information science but with applicability …
Written primarily for professionals in library and information science but with applicability to archives and other information management industries, this handbook provides an overview of metadata work that focuses on diversity, equity, and inclusion (DEI). DEI metadata work has several goals: enhancing diverse representation in descriptive metadata; improving discovery of diverse resources; and mitigating negative effects of inaccurate, outdated, or offensive terminology. Readers will gain a broad awareness of DEI-related issues in metadata creation and management; learn techniques for retroactively reviewing and updating existing metadata to address these issues; and develop strategies to create metadata that better meets DEI needs.
El propósito de este manual es determinar procedimientos generales para el oficial …
El propósito de este manual es determinar procedimientos generales para el oficial y personal militar que ejerce la función logística, con el fin de que se administren los medios o recursos de tal forma que pueda ejecutar un apoyo logístico integral eficiente como oportuno al personal y unidades militares en el teatro de operaciones.
Propaganda! Misinformation! Disinformation! Today we’re talking about the dark – or, shall …
Propaganda! Misinformation! Disinformation! Today we’re talking about the dark – or, shall we say, darkER – side of media. Understanding these media bogeymen is essential to being a more media literate citizen.
Python is a general purpose programming language that is useful for writing …
Python is a general purpose programming language that is useful for writing scripts to work effectively and reproducibly with data. This is an introduction to Python designed for participants with no programming experience. These lessons can be taught in one and a half days (~ 10 hours). They start with some basic information about Python syntax, the Jupyter notebook interface, and move through how to import CSV files, using the pandas package to work with data frames, how to calculate summary information from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from Python.
Data Carpentry lesson from Ecology curriculum to learn how to analyse and …
Data Carpentry lesson from Ecology curriculum to learn how to analyse and visualise ecological data in R. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with ecology data in R. This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from R.
Python is a general purpose programming language that is useful for writing …
Python is a general purpose programming language that is useful for writing scripts to work effectively and reproducibly with data. This is an introduction to Python designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about Python syntax, the Jupyter notebook interface, and move through how to import CSV files, using the pandas package to work with data frames, how to calculate summary information from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from Python.
Understanding the types, processes, and frameworks of workflows and analyses is helpful …
Understanding the types, processes, and frameworks of workflows and analyses is helpful for researchers seeking to understand more about research, how it was created, and what it may be used for. This lesson uses a subset of data analysis types to introduce reproducibility, iterative analysis, documentation, provenance and different types of processes. Described in more detail are the benefits of documenting and establishing informal (conceptual) and formal (executable) workflows.
Short Description: Data analytics is a rapidly evolving field. In today's labour …
Short Description: Data analytics is a rapidly evolving field. In today's labour market, knowing how to acquire, process, and interpret large amounts of data to make optimal decisions is crucial for many professionals, especially those in business and engineering. This open textbook, "a new online course" if you will, focuses on three key concept areas: data acquisition, data processing, and decision-making models. In this course, students will be able to develop advanced knowledge and skills to acquire related data for operations of business or projects; apply quantitative literacy skills such as statistics and machine learning; and use predictive or prescriptive modeling to make timely, actionable, and meaningful decisions.
Long Description: Data analytics is a rapidly evolving field. In today’s labour market, knowing how to acquire, process, and interpret large amounts of data to make optimal decisions is crucial for many professionals, especially those in business and engineering. This open textbook, “a new online course” if you will, focuses on three key concept areas: data acquisition, data processing, and decision-making models. In this course, students will be able to develop advanced knowledge and skills to acquire related data for operations of business or projects; apply quantitative literacy skills such as statistics and machine learning; and use predictive or prescriptive modeling to make timely, actionable, and meaningful decisions.
Word Count: 2038
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
Beta Version Word Count: 92165 ISBN: 979-8-88895-422-5 (Note: This resource's metadata has …
Beta Version
Word Count: 92165
ISBN: 979-8-88895-422-5
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
The Biology Semester-long Course was developed and piloted at the University of …
The Biology Semester-long Course was developed and piloted at the University of Florida in Fall 2015. Course materials include readings, lectures, exercises, and assignments that expand on the material presented at workshops focusing on SQL and R.
Data citation is a key practice that supports the recognition of data …
Data citation is a key practice that supports the recognition of data creation as a primary research output rather than as a mere byproduct of research. Providing reliable access to research data should be a routine practice, similar to the practice of linking researchers to bibliographic references. After completing this lesson, participants should be able to define data citation and describe its benefits; to identify the roles of various actors in supporting data citation; to recognize common metadata elements and persistent data locators and describe the process for obtaining one, and to summarize best practices for supporting data citation.
A part of the data workflow is preparing the data for analysis. …
A part of the data workflow is preparing the data for analysis. Some of this involves data cleaning, where errors in the data are identified and corrected or formatting made consistent. This step must be taken with the same care and attention to reproducibility as the analysis. OpenRefine (formerly Google Refine) is a powerful free and open source tool for working with messy data: cleaning it and transforming it from one format into another. This lesson will teach you to use OpenRefine to effectively clean and format data and automatically track any changes that you make. Many people comment that this tool saves them literally months of work trying to make these edits by hand.
Data curation primers are peer-reviewed, living documents to provide practical and concise …
Data curation primers are peer-reviewed, living documents to provide practical and concise guides on curating a specific data type or format, or addressing a particular challenge in data curation work. All the primers are developed by Data Curation Network (DCN) which is a seed funding project from the Alfred P Sloan Foundation. The target audiences of primers are data curators and/or data librarians. To date, DCN has published more than 25 primers on database, Excel, netCDF, NVivo, R, SPSS, etc.
When entering data, common goals include creating data sets that are valid, …
When entering data, common goals include creating data sets that are valid, have gone through an established process to ensure quality, are organized, and reusable. This lesson outlines best practices for creating data files. It will detail options for data entry and integration, and provide examples of processes used for data cleaning, organization and manipulation.
Today, we're going to discuss how numbers, like statistics, and visual representations …
Today, we're going to discuss how numbers, like statistics, and visual representations like charts and infographics can be used to help us better understand the world or profoundly deceive. Data is a really powerful form of evidence because it can be absorbed quickly and easily, but neither data, nor interpretations of it, are neutral, so today we're going to discuss how to think critically about the statistics we encounter in everyday life.
This Library Carpentry lesson introduces archivists to working with data. At the …
This Library Carpentry lesson introduces archivists to working with data. At the conclusion of the lesson you will: be able to explain terms, phrases, and concepts in code or software development; identify and use best practice in data structures; use regular expressions in searches.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.