This NASA animation shows the levels of atmospheric carbon dioxide over different …
This NASA animation shows the levels of atmospheric carbon dioxide over different time scales. Viewers can compare the last 400,000 years, last 1000 years, and last 25 years. The data come from the Lake Vostok ice cores (400,000 BC to about 4000 BC), Law Dome ice cores (1010 AD to 1975 AD) and Mauna Loa observations (1980 to 2005).
Students gain experience using a spreadsheet and working with others to decide …
Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.
In this activity, learners use the STELLA box modeling software to determine …
In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.
The heart of this activity is a laboratory investigation that models the …
The heart of this activity is a laboratory investigation that models the production of silicon. Students learn about silicon and its sources, uses, properties, importance in the fields of photovoltaics (solar cells/renewable energy) and integrated circuits industries, and, to a limited extent, environmental impact of silicon production.
In this activity for undergraduate students, learners build a highly simplified computer …
In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.
In this activity, students compare carbon dioxide data from Mauna Loa Observatory, …
In this activity, students compare carbon dioxide data from Mauna Loa Observatory, Barrow, Alaska, and the South Pole over the past 40 years. Students use the data to learn about what causes short-term and long-term changes in atmospheric carbon dioxide. This activity makes extensive use of Excel.
In this hands-on lesson, students measure the effect of distance and inclination …
In this hands-on lesson, students measure the effect of distance and inclination on the amount of heat felt by an object and apply this experiment to building an understanding of seasonality. In Part 1, the students set up two thermometers at different distances from a light bulb and record their temperatures to determine how distance from a heat source affects temperature. In Part 2, students construct a device designed to measure the temperature as a function of viewing angle toward the Sun by placing a thermometer inside a black construction paper sleeve, and placing the device at different angles toward the Sun. They then explain how distance and inclination affect heat and identify situations where these concepts apply, such as the seasons on Earth and the NASA Mercury MESSENGER mission.
This demonstration shows how water absorbs more heat than air. The corollary …
This demonstration shows how water absorbs more heat than air. The corollary that is made is that the oceans are absorbing a lot of the heat related to climate change. The video tutorial shows an engaging demonstration that teachers can do live in their classrooms as part of a larger lesson/discussion about global warming. The video itself also includes an animation of how greenhouse gases contribute to global warming and concludes by mentioning simple solutions for students.
The NOAA Sea Level Trends map illustrates U.S. regional and some international …
The NOAA Sea Level Trends map illustrates U.S. regional and some international trends in sea level, with arrows representing the direction and magnitude of change. Students can investigate sea level changes around the U.S. and some worldwide using an interactive map interface with supporting data plots and tables.
This data viewing tool from NOAA offers nearly instant access to dozens …
This data viewing tool from NOAA offers nearly instant access to dozens of datasets about Earth through an engaging interface. Users can select data categories from atmosphere, ocean, land, cryosphere, and climate and drill down from there into more detailed categories.
This video segment describes climate data collection from Greenland ice cores that …
This video segment describes climate data collection from Greenland ice cores that indicate Earth's climate can change abruptly over a single decade rather than over thousands of years. The narrator describes how Earth has undergone dramatic climate shifts in relatively short spans of time prior to 8000 years ago. The video and accompanying essay provide explanations of the differences between weather and climate and how the climate itself had been unstable in the past, with wide variations in temperature occurring over decadal timescales.
This video describes why tropical ice cores are important and provide different …
This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.