Updating search results...

TeachEngineering

TeachEngineering is a standards-aligned, classroom tested digital collection. University engineering faculty, graduate students and K-12 teachers across the nation developed and classroom tested the contents of the TeachEngineering collection, which showcases engineering in everyday life as the context for student learning. Specific contributions by individual authors are recognized at the end of every lesson and activity. The collection aligns with state and/or national science, mathematics and technology educational standards, and uses engineering as the vehicle to integrate science and mathematics concepts for K-12 students.

The University of Colorado Boulder and Oregon State University continue to apply rigorous standards to the publishing process and enhance user features, while creating systems infrastructure to optimize for the growing content, and user base, of the library. TeachEngineering continues to expand with published curricula from almost 70 different institutions. Most curricular contributions are authored by the professors, graduate students and teachers associated with NSF-funded engineering colleges from across the country, primarily GK-12 and RET grantees.

1672 affiliated resources

Search Resources

View
Selected filters:
Movement Task Using Sensors - Humans and Robots
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity helps students understand the significance of programming and also how the LEGO MINDSTORMS(TM) NXT robot's sensors assist its movement and make programming easier. Students compare human senses to robot sensors, describing similarities and differences.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Satish Nair
Date Added:
09/18/2014
Moving without Wheels
Read the Fine Print
Educational Use
Rating
0.0 stars

In a class demonstration, students observe a simple water cycle model to better understand its role in pollutant transport. This activity shows one way in which pollution is affected by the water cycle; it simulates a point source of pollution in a lake and the resulting environmental consequences.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alejandro Reiman-Moreno
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Tyman Stephens
Date Added:
10/14/2015
The Mummified Troll: Devising a Protection Plan
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the parameters of an engineering challenge in which their principal has asked them to devise an invisible security system to cost-effectively protect a treasured mummified troll, while still allowing for visitor viewing during the day. Students generate ideas for solving the grand challenge, first independently, then in small groups, and finally, compiled as a class.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Muscles, Muscles Everywhere
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity helps students learn about the three different types of muscles and how outer space affects astronauts' muscles. They will discover how important it is for astronauts to get adequate exercise both on Earth and in outer space. Also, through the design of their own microgravity exercise machine, students learn about the exercise machines that engineers design specifically for astronaut use.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Beth Myers
Denali Lander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Sara Born
Date Added:
10/14/2015
Muscles, Oh My!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the field of biomechanics and how the muscular system produces human movement. They learn the importance of the muscular system in our daily lives, why it is important to be able to repair muscular system injuries and how engineering can help.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jake Lewis
Jonathan MacNeil
Malinda Schaefer Zarske
Date Added:
09/18/2014
Music by Touch
Read the Fine Print
Educational Use
Rating
0.0 stars

Students' understanding of how robotic touch sensors work is reinforced through a hands-on design challenge involving LEGO MINDSTORMS(TM) NXT intelligent bricks, motors and touch sensors. They learn programming skills and logic design in parallel as they program robot computers to play sounds and rotate a wheel when a touch sensor is pressed, and then produce different responses if a different touch sensor is activated. Students see first-hand how robots can take input from sensors and use it to make decisions to move as programmed, including simultaneously moving a motor and playing music. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Trisha Chaudhary
Date Added:
09/18/2014
Mutation Telephone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform an activity similar to the childhood “telephone” game in which each communication step represents a biological process related to the passage of DNA from one cell to another. This game tangibly illustrates how DNA mutations can happen over several cell generations and the effects the mutations can have on the proteins that cells need to produce. Next, students use the results from the “telephone” game (normal, substitution, deletion or insertion) to test how the mutation affects the survivability of an organism in the wild. Through simple enactments, students act as “predators” and “eat” (remove) the organism from the environment, demonstrating natural selection based on mutation.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
02/03/2017
Mutations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about mutations to both DNA and chromosomes, and uncontrolled changes to the genetic code. They are introduced to small-scale mutations (substitutions, deletions and insertions) and large-scale mutations (deletion duplications, inversions, insertions, translocations and nondisjunctions). The effects of different mutations are studied as well as environmental factors that may increase the likelihood of mutations. A PowerPoint® presentation and pre/post-assessments are provided.

Subject:
Biology
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
02/07/2017
My Mechanical Ear Can Hear!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to various types of hearing impairments and the types of biomedical devices that engineers have designed to aid people with this physical disability.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Emily Weller
Jessica Todd
Lesley Herrmann
Malinda Schaefer Zarske
Sara Born
Date Added:
09/18/2014
My Moon Colony
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the futuristic concept of the moon as a place people can inhabit. They brainstorm what people would need to live on the moon and then design a fantastic Moon colony and decide how to power it. Students use the engineering design process, which includes researching various types of energy sources and evaluating which would be best for their moon colonies.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Janet Yowell
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
10/14/2015
Naked Egg Drop
Read the Fine Print
Educational Use
Rating
0.0 stars

Student pairs experience the iterative engineering design process as they design, build, test and improve catching devices to prevent a "naked" egg from breaking when dropped from increasing heights. To support their design work, they learn about materials properties, energy types and conservation of energy. Acting as engineering teams, during the activity and competition they are responsible for design and construction planning within project constraints, including making engineering modifications for improvement. They carefully consider material choices to balance potentially competing requirements (such as impact-absorbing and low-cost) in the design of their prototypes. They also experience a real-world transfer of energy as the elevated egg's gravitational potential energy turns into kinetic energy as it falls and further dissipates into other forms upon impact. Pre- and post-activity assessments and a scoring rubric are provided. The activity scales up to district or regional egg drop competition scale. As an alternative to a ladder, detailed instructions are provided for creating a 10-foot-tall egg dropper rig.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Jabusch
Date Added:
10/14/2015
Name That Metal!
Read the Fine Print
Educational Use
Rating
0.0 stars

Given an assortment of unknown metals to identify, student pairs consider what unique intrinsic (aka intensive) metal properties (such as density, viscosity, boiling or melting point) could be tested. For the provided activity materials (copper, aluminum, zinc, iron or brass), density is the only property that can be measured so groups experimentally determine the density of the "mystery" metal objects. They devise an experimental procedure to measure mass and volume in order to calculate density. They calculate average density of all the pieces (also via the graphing method if computer tools area available). Then students analyze their own data compared to class data and perform error analysis. Through this inquiry-based activity, students design their own experiments, thus experiencing scientific investigation and experimentation first hand. A provided PowerPoint(TM) file and information sheet helps to introduce the five metals, including information on their history, properties and uses.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ann McCabe
Azim Laiwalla
Carleigh Samson
Dua Naim Chaker
Karen McCleary
Date Added:
10/14/2015
NanoTech: Insights into a Nano-Sized World
Read the Fine Print
Educational Use
Rating
0.0 stars

Through two lessons and four activities, students learn about nanotechnology, its extreme smallness, and its vast and growing applications in our world. Embedded within the unit is a broader introduction to the field of material science and engineering and its vital role in nanotechnology advancement. Engaging mini-lab activities on ferrofluids, quantum dots and gold nanoparticles introduce students to specific fields within nanoscience and help them understand key concepts as the basis for thinking about engineering and everyday applications that use next-generation technology nanotechnology.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Nanoparticles at Photocatalytic Speed!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams learn how water filtration systems that use nanoparticles and nanotechnology can remove organic compounds from water. First they learn about the role nanoparticles play in water filtration. Then they are introduced to the basics of nanoparticles and nanotechnology, focusing on the impacts and benefits this innovative technology has on our daily lives. Using methylene blue and methyl orange solutions, students test for the efficiency of photocatalytic nanoparticles to sanitize water. They expose a solution sample of water and methyl orange (the microbe indicator) with their newly-made water sanitation filters under UV light (sunlight) to activate the photocatalytic properties of three specific nanoparticles. They visually compare them with control samples to determine the best photocatalytic nanoparticle to sanitize water.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Josie Zamora
Date Added:
08/20/2018
Nanotechnology Grant Proposal Writing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply the knowledge gained from the previous lessons and activities in this unit to write draft grant proposals to the U.S. National Institutes of Health outlining their ideas for proposed research using nanoparticles to protect against, detect or treat skin cancer. Through this exercise, students demonstrate their understanding of the environmental factors that contribute to skin cancer, the science and mathematics of UV radiation, the anatomy of human skin, current medical technology applications of nanotechnology and the societal importance of funding research in this area, as well as their communication skills in presenting plans for specific nanoscale research they would conduct using nanoparticles.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Nanotechnology Scavenger Hunt!
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a scavenger hunt, students are introduced to the world of nanotechnology. In the form of a competition, groups race to locate symbols that correlate to an answer to a general nanotechnology question. Each team receives paper slips with questions; the remaining questions are hidden behind QR codes. Groups need to answer eight total questions in the correct order. Because this is an intro to nanotechnology and its associated engineering, students need to use problem-solving skills in order to identify the correct answers. After the initial scavenger hunt, a brief class discussion explores advances in nanotechnology. Next, students work in teams to research different areas of nanotechnology as they create their own scavenger hunt games.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Carolyn Nichol
Christina Crawford
Date Added:
10/11/2018
Nanotechnology and Cancer Treatments
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the biomedical use of nanoparticles in the detection and treatment of cancer, including the use of quantum dots and lasers that heat-activate nanoparticles. They also learn about electrophoresis a laboratory procedure that uses an electric field to move tiny particles through a channel in order to separate them by size. They complete an online virtual mini-lab, with accompanying worksheet, to better understand gel electrophoresis. This prepares them for the associated activity to write draft research proposals to use nanoparticles to protect against, detect or treat skin cancer.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Nanotechnology as a Whole
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given a general overview of nanotechnology principles and applications, as well as nanomaterials engineering. Beginning with an introductory presentation, they learn about the nano-scale concept and a framework for the length scales involved in nanotechnology. Engineering applications are introduced and discussed. This prepares students to conduct the associated activity in which they relate the nano-length scale to everyday objects. At completion, students are able to identify nanotechnology applications and have a frame of reference for the second lesson of the unit.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Natural Disasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to our planet's structure and its dynamic system of natural forces through an examination of the natural hazards of earthquakes, volcanoes, landslides, tsunamis, floods and tornados, as well as avalanches, fires, hurricanes and thunderstorms. They see how these natural events become disasters when they impact people, and how engineers help to make people safe from them. Students begin by learning about the structure of the Earth; they create clay models showing the Earth's layers, see a continental drift demo, calculate drift over time, and make fault models. They learn how earthquakes happen; they investigate the integrity of structural designs using model seismographs. Using toothpicks and mini-marshmallows, they create and test structures in a simulated earthquake on a tray of Jell-O. Students learn about the causes, composition and types of volcanoes, and watch and measure a class mock eruption demo, observing the phases that change a mountain's shape. Students learn that the different types of landslides are all are the result of gravity, friction and the materials involved. Using a small-scale model of a debris chute, they explore how landslides start in response to variables in material, slope and water content. Students learn about tsunamis, discovering what causes them and makes them so dangerous. Using a table-top-sized tsunami generator, they test how model structures of different material types fare in devastating waves. Students learn about the causes of floods, their benefits and potential for disaster. Using riverbed models made of clay in baking pans, students simulate the impact of different river volumes, floodplain terrain and levee designs in experimental trials. They learn about the basic characteristics, damage and occurrence of tornadoes, examining them closely by creating water vortices in soda bottles. They complete mock engineering analyses of tornado damage, analyze and graph US tornado damage data, and draw and present structure designs intended to withstand high winds.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
04/10/2009
Natural Frequency and Buildings
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about frequency and period, particularly natural frequency using springs. They learn that the natural frequency of a system depends on two things: the stiffness and mass of the system. Students see how the natural frequency of a structure plays a big role in the building surviving an earthquake or high winds.

Subject:
Applied Science
Education
Engineering
Geoscience
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jake Moravec
Date Added:
09/18/2014