TeachEngineering is a standards-aligned, classroom tested digital collection. University engineering faculty, graduate students and K-12 teachers across the nation developed and classroom tested the contents of the TeachEngineering collection, which showcases engineering in everyday life as the context for student learning. Specific contributions by individual authors are recognized at the end of every lesson and activity. The collection aligns with state and/or national science, mathematics and technology educational standards, and uses engineering as the vehicle to integrate science and mathematics concepts for K-12 students.
The University of Colorado Boulder and Oregon State University continue to apply rigorous standards to the publishing process and enhance user features, while creating systems infrastructure to optimize for the growing content, and user base, of the library. TeachEngineering continues to expand with published curricula from almost 70 different institutions. Most curricular contributions are authored by the professors, graduate students and teachers associated with NSF-funded engineering colleges from across the country, primarily GK-12 and RET grantees.
Students are given a biomedical engineering challenge, which they solve while following …
Students are given a biomedical engineering challenge, which they solve while following the steps of the engineering design process. In a design lab environment, student groups design, create and test prototype devices that help people using crutches carry things, such as books and school supplies. The assistive devices must meet a list of constraints, including a device weight limit and minimum load capacity. Students use various hand and power tools to fabricate the devices. They test the practicality of their designs by loading them with objects and then using the modified crutches in the school hallways and classrooms.
The purpose of this activity is for the students to draw a …
The purpose of this activity is for the students to draw a design for their own flying machine. They will apply their knowledge of aircraft design and the forces acting on them. The students will start with a brainstorming activity where they come up with creative uses for every day objects. They will then use their creativity and knowledge of airplanes to design their own flying machine.
Students create a concept design of their very own net-zero energy classroom …
Students create a concept design of their very own net-zero energy classroom by pasting renewable energy and energy-efficiency items into and around a pretend classroom on a sheet of paper. They learn how these items (such as solar panels, efficient lights, computers, energy meters, etc.) interact to create a learning environment that produces as much energy as it uses.
After a discussion about what a parachute is and how it works, …
After a discussion about what a parachute is and how it works, students create parachutes using different materials that they think will work best. They test their designs, and then contribute to a class discussion (and possible journal writing) to report which paper materials worked best.
Students brainstorm ideas for board game formats. Then student teams design, create …
Students brainstorm ideas for board game formats. Then student teams design, create and test games in which players must think of alternative uses (recycling) for used products.
Students design and build a model city powered by the sun! They …
Students design and build a model city powered by the sun! They learn about the benefits of solar power, and how architectural and building engineers integrate photovoltaic panels into the design of buildings.
Students are presented with the following challenge: their new school is under …
Students are presented with the following challenge: their new school is under construction and the architect accidentally put the music room next to the library. Students need to design a room that will absorb the most amount of sound so that the music does not disturb the library. Students use a box as a proxy for the room need to create a design that will decrease the sound that is coming from the outside of the box. To evaluate this challenge, students use a speaker within the box and a decibel meter outside the box to measure the effectiveness of their design.
Student teams use their knowledge about ancient Egypt to design playgrounds for …
Student teams use their knowledge about ancient Egypt to design playgrounds for Egyptian children. This involves brainstorming ideas on paper, building models with LEGO® bricks or other materials, and explaining their ideas to the class in five-minute presentations.
In this two-part activity, students design and build Rube Goldberg machines. This …
In this two-part activity, students design and build Rube Goldberg machines. This open-ended challenge employs the engineering design process and may have a pre-determined purpose, such as rolling a marble into a cup from a distance, or let students decide the purposes.
Students learn how to use wind energy to combat gravity and create …
Students learn how to use wind energy to combat gravity and create lift by creating their own tetrahedral kites capable of flying. They explore different tetrahedron kite designs, learning that the geometry of the tetrahedron shape lends itself well to kites and wings because of its advantageous strength-to-weight ratio. Then they design their own kites using drinking straws, string, lightweight paper/plastic and glue/tape. Student teams experience the full engineering design cycle as if they are aeronautical engineers—they determine the project constraints, research the problem, brainstorm ideas, select a promising design and build a prototype; then they test and redesign to achieve a successful flying kite. Pre/post quizzes and a worksheet are provided.
Emphasizing the design, build, and test steps of the engineering design process, …
Emphasizing the design, build, and test steps of the engineering design process, groups create a ping-pong paddle. After building their paddle, students conduct tests and compare their design to a store-bought paddle and use a Venn diagram to organize their information. Based on their results, students write product reviews for their paddle. This project allows students to build and test a design, iterate upon that design as well as explore how data analysis of a product works.
Students learn about the types of possible loads, how to calculate ultimate …
Students learn about the types of possible loads, how to calculate ultimate load combinations, and investigate the different sizes for the beams (girders) and columns (piers) of simple bridge design. Students learn the steps that engineers use to design bridges: understanding the problem, determining the potential bridge loads, calculating the highest possible load, and calculating the amount of material needed to resist the loads.
Students are introduced to engineering, specifically to biomedical engineering and the engineering …
Students are introduced to engineering, specifically to biomedical engineering and the engineering design process, through a short lecture and an associated hands-on activity in which they design their own medical devices for retrieving foreign bodies from the ear canal. Through the lesson, they learn the basics of ear anatomy and how ear infections occur and are treated. Besides antibiotic treatment, the most common treatment for chronic ear infections is the insertion of ear tubes to drain fluid from the middle ear space to relieve pressure on the ear drum. Medical devices for this procedure, a very common children's surgery, are limited, sometimes resulting in unnecessary complications from a simple procedure. Thus, biomedical engineers must think creatively to develop new solutions (that is, new and improved medical devices/instruments) for inserting ear tubes into the ear drum. The class learns the engineering design process from this ear tube example of a medical device design problem. In the associated activity, students explore biomedical engineering on their own by designing prototype medical devices to solve another ear problem commonly experienced by children: the lodging of a foreign body (such as a pebble, bead or popcorn kernel) in the ear canal. The activity concludes by teams sharing and verbally analyzing their devices.
Students learn the concept behind the engineering design of a polymer brush—a …
Students learn the concept behind the engineering design of a polymer brush—a coating consisting of polymers that is “tethered” to a particular surface. Polymer brushes can be used on water filtration membranes as an antifouling coating. After designing a model that represents an antifouling polymer brush coating for a water filtration surface, students take on the challenge to engineer their brush design on the surface of a Styrofoam block (which serves as a model for a surface filter) using various materials.
How can an understanding of pH—a logarithmic scale used to identify the …
How can an understanding of pH—a logarithmic scale used to identify the acidity or basicity of a water-based solution—be used to design and create a color-changing paint? This activity provides students the opportunity to extract dyes from natural products and test dyes for acids or bases as teams develop a prototype “paint” that is eventually applied to help with a wall redesign at a local children’s hospital. Students learn about how dyes are extracted from organic material and use the engineering design process to test dyes using a variety of indicators to achieve the right color for their prototype. Students iterate on their dyes and use ratios and proportions to calculate the amount of dye needed to successfully complete their painting project.
Students learn the engineering design process by following the steps, from problem …
Students learn the engineering design process by following the steps, from problem identification to designing a device and evaluating its efficacy and areas for improvement. A quick story at the beginning of the activity sets up the challenge: A small child put a pebble in his ear and we don't know how to get it out! Acting as biomedical engineers, students are asked to design a device to remove it. Each student pair is provided with a model ear canal and a variety of classroom materials. A worksheet guides the design process as students create devices and attempt to extract pebbles from the ear canal.
Student teams act as engineers and brainstorm, design, create and test their …
Student teams act as engineers and brainstorm, design, create and test their ideas for packaging to protect a raw egg shipped in a 9 x 12-in envelope. They follow the steps of the engineering design process and aim for a successful solution with no breakage, low weight, minimal materials and recyled/reused materials. Students come to understand the multi-faceted engineering considerations associated with the packaging of items to preserve, market and safely transport goods.
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of …
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.
Students find and calculate the angle that light is transmitted through a …
Students find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, student teams design and build their own spectrographs, researching and designing a ground- or space-based mission using their creation. At project end, teams present their findings to the class, as if they were making an engineering conference presentation. Student must have completed the associated Building a Fancy Spectrograph activity before attempting this activity.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.