TeachEngineering is a standards-aligned, classroom tested digital collection. University engineering faculty, graduate students and K-12 teachers across the nation developed and classroom tested the contents of the TeachEngineering collection, which showcases engineering in everyday life as the context for student learning. Specific contributions by individual authors are recognized at the end of every lesson and activity. The collection aligns with state and/or national science, mathematics and technology educational standards, and uses engineering as the vehicle to integrate science and mathematics concepts for K-12 students.
The University of Colorado Boulder and Oregon State University continue to apply rigorous standards to the publishing process and enhance user features, while creating systems infrastructure to optimize for the growing content, and user base, of the library. TeachEngineering continues to expand with published curricula from almost 70 different institutions. Most curricular contributions are authored by the professors, graduate students and teachers associated with NSF-funded engineering colleges from across the country, primarily GK-12 and RET grantees.
Students learn about oil spills and their environmental and economic effects. They …
Students learn about oil spills and their environmental and economic effects. They experience the steps of the engineering design process as they brainstorm potential methods for oil spill clean-up, and then design, build, and re-design oil booms to prevent the spread of oil spills. During a reflective session after cleaning up their oil booms, students come up with ideas on how to reduce oil consumption to prevent future oil spills.
The lesson begins by introducing Olympics as the unit theme. The purpose …
The lesson begins by introducing Olympics as the unit theme. The purpose of this lesson is to introduce students to the techniques of engineering problem solving. Specific techniques covered in the lesson include brainstorming and the engineering design process. The importance of thinking out of the box is also stressed to show that while some tasks seem impossible, they can be done. This introduction includes a discussion of the engineering required to build grand, often complex, Olympic event centers.
Students learn that charge movement through a circuit depends on the resistance …
Students learn that charge movement through a circuit depends on the resistance and arrangement of the circuit components. In a hands-on activity, students build and investigate the characteristics of series circuits. In another activity, students design and build a flashlight.
In this activity, students learn about ocean currents and the difference between …
In this activity, students learn about ocean currents and the difference between salt and fresh water. They use colored ice cubes to see how cold and warm water mix and how this mixing causes currents. Also, students learn how surface currents occur due to wind streams. Lastly, they learn how fresh water floats on top of salt water, the difference between water in the ocean and fresh water throughout the planet, and how engineers are involved in the design of ocean water systems for human use.
Looking at models and maps, students explore different pathways and consequences of …
Looking at models and maps, students explore different pathways and consequences of pollutant transport via the weather and water cycles. In an associated literacy activity, students develop skills of observation, recording and reporting as they follow the weather forecast and produce their own weather report for the class.
Students act as structural engineers and learn about forces and load distributions …
Students act as structural engineers and learn about forces and load distributions as they follow the steps of the engineering design process to design and build small-scale bridges using wooden tongue depressors and glue. Teams brainstorm ideas that meet the size and material design constraints and create prototype bridges of the most promising solutions. They test their bridges to see how much weight they can hold until they break and then determine which have the highest strength-to-weight ratios. They examine the prototype failures to identify future improvements. This activity is part of a unit in which multiple activities are brought together for an all-day school/multi-school concluding “engineering field day” competition.
Using their knowledge of the phases of matter, the scientific method, and …
Using their knowledge of the phases of matter, the scientific method, and polymers, student teams work as if they are chemical engineers to optimize the formula for slime. Hired by the fictional company, Slime Productions, students are challenged to modify the chemical composition of the basic formula for slime to maximize its "bounce factor."
Students work in engineering teams to optimize cleaner energy solutions for cooking …
Students work in engineering teams to optimize cleaner energy solutions for cooking and heating in rural China. They choose between various options for heating, cooking, hot water, and lights and other electricity, balancing between the cost and health effects of different energy choices.
Student groups work with manipulatives—pencils and trays—to maximize various quantities of a …
Student groups work with manipulatives—pencils and trays—to maximize various quantities of a system. They work through three linear optimization problems, each with different constraints. After arriving at a solution, they construct mathematical arguments for why their solutions are the best ones before attempting to maximize a different quantity. To conclude, students think of real-world and engineering space optimization examples—a frequently encountered situation in which the limitation is the amount of space available. It is suggested that students conduct this activity before the associated lesson, Linear Programming, although either order is acceptable.
Students learn about how a device made with dye from a plant, …
Students learn about how a device made with dye from a plant, specifically cherries, blackberries, raspberries and/or black currents, can be used to convert light energy into electrical energy. They do this by building their own organic solar cells and measuring the photovoltaic devices' performance based on power output.
For students that have already been introduced to the water cycle this …
For students that have already been introduced to the water cycle this lesson is intended as a logical follow-up. Students will learn about human impacts on the water cycle that create a pathway for pollutants beginning with urban development and joining the natural water cycle as surface runoff. The extent of surface runoff in an area depends on the permeability of the materials in the ground. Permeability is the degree to which water or other liquids are able to flow through a material. Different substances such as soil, gravel, sand, and asphalt have varying levels of permeability. In this lesson, along with the associated activities, students will learn about permeability and compare the permeability of several different materials for the purpose of engineering landscape drainage systems.
The purpose of this lesson is to introduce the students to the …
The purpose of this lesson is to introduce the students to the Sun. They explore various aspects of the Sun including its composition, its interior workings, and its relationship to the Earth.
This lesson covers the topic of human bones and joints. Students learn …
This lesson covers the topic of human bones and joints. Students learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. Students also learn how to take care of their bones here on Earth to prevent osteoporosis or weakening of the bones.
Students are introduced to the fabulous planet on which they live. Even …
Students are introduced to the fabulous planet on which they live. Even though we spend our entire lives on Earth, we still do not always understand how it fits into the rest of the solar system. Students learn about the Earth's position in the solar system and what makes it unique. They learn how engineers study human interactions with the Earth and design technologies and systems to monitor, use and care for our planet's resources wisely to preserve life on Earth.
Students learn about the human body's system components, specifically its sensory systems, …
Students learn about the human body's system components, specifically its sensory systems, nervous system and brain, while comparing them to robot system components, such as sensors and computers. The unit's life sciences-to-engineering comparison is accomplished through three lessons and five activities. The important framework of "stimulus-sensor-coordinator-effector-response" is introduced to show how it improves our understanding the cause-effect relationships of both systems. This framework reinforces the theme of the human body as a system from the perspective of an engineer. This unit is the second of a series, intended to follow the Humans Are Like Robots unit.
Students explore the outermost planets of our solar system: Saturn, Uranus and …
Students explore the outermost planets of our solar system: Saturn, Uranus and Neptune. They also learn about characteristics of Pluto and its interactions with Neptune. Students learn a little about the history of space travel as well as the different technologies that engineers develop to make space travel and scientific discovery possible.
Student teams are challenged to design and build architecturally inspired cardboard furniture, …
Student teams are challenged to design and build architecturally inspired cardboard furniture, guided by the steps of the engineering design process. They cultivate their industrial engineering and design skills to design furnishings that meet functional, aesthetic and financial requirements. Given constraints that include limited building materials and tools, groups research architectural styles and period furnishings. The teams brainstorm ideas, make small-scale quick prototypes, then make detailed plans and create full-scale prototypes of their best solutions. The full-size prototypes are evaluated by peer critique for aesthetic alignment to the targeted architectural style and tested for functionality. After final refinements, teams present their concepts and display their final prototype furnishings in an exhibition.
Student groups are challenged to create food packages for specific foods. They …
Student groups are challenged to create food packages for specific foods. They focus on three components in the design of their food packages; the packages must keep the food clean, protect or aid in the physical and chemical changes that can take place in the food, and present the food appealingly. They design their packaging to meet these requirements.
Vision is the primary sense of many animals and much is known …
Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.
Light up your love with paper circuits this Valentine’s Day—no soldering required! …
Light up your love with paper circuits this Valentine’s Day—no soldering required! Create a sure-to-impress flashing birthday card or design a light-up Christmas card—all with paper circuits! In this activity, students are guided through the process to create simple paper circuitry using only copper tape, a coin cell battery, a light-emitting diode (LED) and small electronic components such as a LilyPad Button Board. Making light-up greeting cards with paper circuitry is great way to teach the basics of how circuits function while giving students an outlet to express their artistic creativity.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.