The STEM Concept Videos are designed to help students learn a pivotal …
The STEM Concept Videos are designed to help students learn a pivotal concept in science, technology, engineering, and/or mathematics (STEM). These ideas are the building blocks of many engineering curricula, and learning them will help students master more difficult material. The STEM Concept Videos were produced by the Teaching and Learning Lab (TLL) at MIT for the Singapore University of Technology and Design (SUTD). For more information on how these videos were developed, please see the paper presented by TLL researchers at the American Society for Engineering Education (ASEE) 2013 conference. Shah, D.N., JE French, J. Rankin, L. Breslow. “Using Video to Tie Engineering Themes to Foundational Concepts.” American Society for Engineering Education Annual Conference, June 23-26, 2013.
Word Count: 67604 (Note: This resource's metadata has been created automatically by …
Word Count: 67604
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
This subject teaches students, having an initial interest in sailing design, how …
This subject teaches students, having an initial interest in sailing design, how to design good yachts. Topics covered include hydrostatics, transverse stability, and the incorporation of the design spiral into one’s working methods. Computer aided design (CAD) is used to design the shapes of hulls, appendages and decks, and is an important part of this course. The capstone project in this course is the Final Design Project in which each student designs a sailing yacht, complete in all major respects. The central material for this subject is the content of the book Principals of Yacht Design by Larssson and Eliasson (see further description in the syllabus). All the class lectures are based on the material in this book. The figures in the book which are shown in class (but not reproduced on this site), contain the essential material and their meaning is explained in detail during the lecture sessions. Mastery of the material in the book and completing a design project provides the desired and needed education. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.734. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.996.
This subject examines the role scientists have played as activists in social …
This subject examines the role scientists have played as activists in social movements in the U.S. following World War II. Themes include scientific responsibility and social justice, the roles of gender, race, and power, the motivation of individual scientists, strategies for organizing, and scientists’ impact within social movements. Case studies include atmospheric testing of nuclear weapons and the nuclear freeze campaign, climate science and environmental justice, the civil rights movement, Vietnam War protests, the March 4 movement at MIT, concerns about genetic engineering, gender equality, intersectional feminism, and student activism at MIT. Read a profile of the class “Scientists as Engaged Citizens” by the MIT School of Humanities, Arts, and Social Sciences.
Environmentalists have traditionally relied upon the power of their prose to transform …
Environmentalists have traditionally relied upon the power of their prose to transform the thoughts and behavior of their contemporaries. In 1963, Rachel Carson, a marine biologist with a penchant for writing, described a world without wildlife in Silent Spring and altered the way Americans understood their impact on the landscape. Like other writers we will encounter this semester, Carson realized that she could alter the perceptions of her contemporaries only if she was able to transmit her knowledge in engaging and accessible language. We will do our best to follow in her footsteps.
This course examines the science of natural catastrophes such as earthquakes and …
This course examines the science of natural catastrophes such as earthquakes and hurricanes and explores the relationships between the science of and policy toward such hazards. It presents the causes and effects of these phenomena, discusses their predictability, and examines how this knowledge influences policy making. This course includes intensive practice in the writing and presentation of scientific research and summaries for policy makers.
Survey of the important aspects of modern sediments and ancient sedimentary rocks. …
Survey of the important aspects of modern sediments and ancient sedimentary rocks. Emphasis is on fundamental materials, features, and processes. Textures of siliciclastic sediments and sedimentary rocks: particle size, particle shape, and particle packing. Mechanics of sediment transport. Survey of siliciclastic sedimentary rocks: sandstones, conglomerates, and shales. Carbonate sediments and sedimentary rocks; cherts; evaporites. Siliciclastic and carbonate diagenesis. Paleontology, with special reference to fossils in sedimentary rocks. Modern and ancient depositional environments. Stratigraphy. Sedimentary basins. Fossil fuels: coal, petroleum.
This course covers sediments in the rock cycle, production of sediments at …
This course covers sediments in the rock cycle, production of sediments at the Earth’s surface, physics and chemistry of sedimentary materials, and scale and geometry of near-surface sedimentary bodies, including aquifers. We will also explore topics like sediment transport and deposition in modern sedimentary environments, burial and lithification, survey of major sedimentary rock types, stratigraphic relationships of sedimentary basins, and evolution of sedimentary processes through geologic time.
This course is an introduction to branes in string theory and their …
This course is an introduction to branes in string theory and their world volume dynamics. Instead of looking at the theory from the point of view of the world-sheet observer, we will approach the problem from the point of view of an observer which lives on a brane. Instead of writing down conformal field theory on the world-sheet and studying the properties of these theories, we will look at various branes in string theory and ask how the physics on their world-volume looks like.
6.780 covers statistical modeling and the control of semiconductor fabrication processes and …
6.780 covers statistical modeling and the control of semiconductor fabrication processes and plants. Topics covered include: design of experiments, response surface modeling, and process optimization; defect and parametric yield modeling; process/device/circuit yield optimization; monitoring, diagnosis, and feedback control of equipment and processes; and analysis and scheduling of semiconductor manufacturing operations.
6.977 focuses on the physics of the interaction of photons with semiconductor …
6.977 focuses on the physics of the interaction of photons with semiconductor materials. The band theory of solids is used to calculate the absorption and gain of semiconductor media. The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response. Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices. The course is also intended to introduce students to noise models for semiconductor devices and to applications of optoelectronic devices to fiber optic communications. This course is worth 12 Engineering Design points.
This course uses lectures and discussion to introduce the range of topics …
This course uses lectures and discussion to introduce the range of topics relevant to plasma physics and fusion engineering. An introductory discussion of the economic and ecological motivation for the development of fusion power is also presented. Contemporary magnetic confinement schemes, theoretical questions, and engineering considerations are presented by expert guest lecturers. Students enrolled in the course also tour the Plasma Science and Fusion Center experimental facilities.
Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental …
Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental Science track, this course is an introduction to current research in the field. Stresses integration of central scientific concepts in environmental policy making and the chemistry, biology, and geology environmental science tracks. Revisits selected core themes for students who have already acquired a basic understanding of environmental science concepts. The topic for this term is geoengineering.
This cross-disciplinary course aims to understand the historical development and the current …
This cross-disciplinary course aims to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.
The main objective of this cross-disciplinary course is to understand the historical …
The main objective of this cross-disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.
This course covers the general principles of separation by equilibrium and rate …
This course covers the general principles of separation by equilibrium and rate processes. Topics include staged cascades and applications to distillation, absorption, adsorption, and membrane processes. Phase equilibria and the role of diffusion are also covered.
This course serves as an introduction to the fundamental principles of separation …
This course serves as an introduction to the fundamental principles of separation operations for the recovery of products from biological processes, membrane filtration, chromatography, centrifugation, cell disruption, extraction, and process design. This course was last taught during the regular school year in the Spring semester of 1999, but has been a part of the MIT Technology and Development Program (TDP) at the Malaysia University of Science and Technology (MUST), as well as at MIT’s Professional Institute in more recent years.
This course is intended for first year graduate students and advanced undergraduates …
This course is intended for first year graduate students and advanced undergraduates with an interest in design of ships or offshore structures. It requires a sufficient background in structural mechanics. Computer applications are utilized, with emphasis on the theory underlying the analysis. Hydrostatic loading, shear load and bending moment, and resulting primary hull primary stresses will be developed. Topics will include; ship structural design concepts, effect of superstructures and dissimilar materials on primary strength, transverse shear stresses in the hull girder, and torsional strength among others. Failure mechanisms and design limit states will be developed for plate bending, column and panel buckling, panel ultimate strength, and plastic analysis. Matrix stiffness, grillage, and finite element analysis will be introduced. Design of a ship structure will be analyzed by “hand” with desktop computer tools and a final design project using current applications for structural design of a section will be accomplished. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.122. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.082.
An Edited Collection of Resources Built by Learners, for Learners Word Count: …
An Edited Collection of Resources Built by Learners, for Learners
Word Count: 20284
Included H5P activities: 126
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.