Updating search results...

Applied Science Textbooks and Full Courses

2952 affiliated resources

Search Resources

View
Selected filters:
Electromagnetic Interactions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation.
Acknowledgments
Professor Freidberg would like to acknowledge the immense contributions made to this course by its previous instructors, Ian Hutchinson and Ron Parker.

Subject:
Applied Science
Engineering
Environmental Science
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Freidberg, Jeffrey
Date Added:
09/01/2005
Electromagnetics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

I have revamped the book Electromagnetics 1 by Steven Ellingson as a part of idoer project. Changes I made in this version of the book include:
• Cover design
• Typesetting
• Visual improvement of figures
• Addition of problems.

If you notice any errors please check the original source which is available at:
https://vtechworks.lib.vt.edu/handle/10919/84164

Image source:
https://drive.google.com/drive/folders/1k2zHmuuHwUTnM5ea5ifaqcvkU5XJ_9eT

If you have any questions about this version of the work please message me directly or contact me at watershiptepesi@gmail.com.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Author:
Steven W. Ellingson
Date Added:
08/15/2023
Electromagnetics, Volume 1
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics Volume 1 by Steven W. Ellingson is a 225-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wage equations for voltage and current.

Suggested citation: Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0

Three formats of this book are available:
Print (ISBN 978-0-9979201-8-5)
PDF (ISBN 978-0-9979201-9-2)
LaTeX source files

If you are a professor reviewing, adopting, or adapting this textbook please help us understand a little more about your use by filling out this form: http://bit.ly/vtpublishing-updates

Additional Resources
Problem sets and the corresponding solution manual are also available.
Community portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455/
Faculty listserv for the Electromagnetics series https://groups.google.com/a/vt.edu/d/forum/electromagnetics-g
Submit feedback and suggestions http://bit.ly/electromagnetics-suggestion

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Electric and Magnetic Fields
Chapter 3: Transmission Lines
Chapter 4: Vector Analysis
Chapter 5: Electrostatics
Chapter 6: Steady Current and Conductivity
Chapter 7: Magnetostatics
Chapter 8: Time-Varying Fields
Chapter 9: Plane Waves in Lossless Media
Appendixes
A. Constitutive Parameters of Some Common Materials
B. Mathematical Formulas
C. Physical Constants

About the Author: Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016).

This textbook is part of the Open Electromagnetics Project led by Steven W. Ellingson at Virginia Tech. The goal of the project is to create no-cost openly-licensed content for courses in undergraduate engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Accessibility features of this book: Screen reader friendly, navigation, and Alt-text for all images and figures.

Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
08/23/2018
Electromagnetics, Volume 2
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas.

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Magnetostatics Redux
Chapter 3: Wave Propagation in General Media
Chapter 4: Current Flow in Imperfect Conductors
Chapter 5: Wave Reflection and Transmission
Chapter 6: Waveguides
Chapter 7: Transmission Lines Redux
Chapter 8: Optical Fiber
Chapter 9: Radiation
Chapter 10: Antennas
Appendix A: Constitutive Parameters of Some Common Materials
Appendix B: Mathematical Formulas
Appendix C: Physical Constants

Additional Resources
Problem sets and the corresponding solution manuals
Slides of figures used in and created for the book
LaTeX sourcefiles.
Screen-reader friendly version
Errata for Volume 2
Collaborator portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455
Faculty listserv for the Electromagnetics series
Submit feedback and suggestions

The Open Electromagnetics Project https://www.faculty.ece.vt.edu/swe/oem
Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Books in this Series
Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1
Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2

To express your interest in a book or this series, please visit http://bit.ly/vtpublishing-updates

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Steven W. Ellingson
Date Added:
12/16/2019
Electromagnetics and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Staelin, David
Date Added:
02/01/2009
Electromagnetics and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores electromagnetic phenomena in modern applications, including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, antennas, sensors, micro-electromechanical systems, motors, and power generation and transmission. Fundamentals covered include: quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided and unguided waves; resonance; and forces, power, and energy.
Acknowledgments
The instructors would like to thank Robert Haussman for transcribing into LaTeX the problem set and Quiz 2 solutions.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Ippen, Erich
Staelin, David
Zahn, Markus
Date Added:
09/01/2005
Electromechanical Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1968 by John Wiley and Sons, Inc., Electromechanical Dynamics discusses the interaction of electromagnetic fields with media in motion. The subject combines classical mechanics and electromagnetic theory and provides opportunities to develop physical intuition. The book uses examples that emphasize the connections between physical reality and analytical models. Types of electromechanical interactions covered include rotating machinery, plasma dynamics, the electromechanics of biological systems, and magnetoelasticity.
An accompanying solutions manual for the problems in the text is provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Melcher, James
Woodson, Herbert
Date Added:
02/01/2009
Electromechanical Systems - 1st Edition
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This eBook was written as the third installment in the series that coincide with three engineering courses taught at the University of Oklahoma (ENGR 2431, ENGR 2531, and ENGR 3431). These courses were designed to provide non-major students – those not majoring in electrical or computer engineering (ECE) – a foundation in various ECE topics. ENGR 2431 is a prerequisite for both ENGR 2531 and ENGR 3431 and it is recommended that the DC Circuits book be studied prior to beginning the eBooks created for the other two courses. The following topics are covered in this book: LabVIEW Overview Module 1 – Number Systems and Character Encoding Module 2 – Digital Logic Module 3 – Measurement and Instrumentation Overview Module 4 – Sensors Module 5 – Power Systems Module 6 – Electric Machines Module 7 – Computer Communications Appendix A – Step by Step Guide to Digital, Analog, and Counter IOs in a DAQ

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
SHAREOK
Date Added:
11/22/2024
Electronic Feedback Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Feedback control is an important technique that is used in many modern electronic and electromechanical systems. The successful inclusion of this technique improves performance, reliability, and cost effectiveness of many designs. In this series of lectures we introduce the analytical concepts that underlie classical feedback system design. The application of these concepts is illustrated by a variety of experiments and demonstration systems. The diversity of the demonstration systems reinforces the value of the analytic methods.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Roberge, James
Date Added:
02/01/2013
Electronic, Optical and Magnetic Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course describes how electronic, optical and magnetic properties of materials originate from their electronic and molecular structure and how these properties can be designed for particular applications. It offers experimental exploration of the electronic, optical and magnetic properties of materials through hands-on experimentation and practical materials examples.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Anikeeva, Polina
Beach, Geoffrey
Holten-Andersen, Niels
Date Added:
02/01/2013
Electronic Resource Management in Libraries
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a textbook for library science students and librarians on electronic resource management. It includes four main chapters that cover the electronic resource librarianship, technologies and standards, e-resource stewardship, and patrons. The book was written and is used by the author and is updated annually when the course is taught.

Subject:
Applied Science
Business and Communication
Information Science
Management
Technology
Material Type:
Full Course
Author:
C. Sean Burns
Date Added:
08/10/2023
Electronic and Mechanical Properties of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the fundamental concepts that determine the electrical, optical, magnetic and mechanical properties of metals, semiconductors, ceramics and polymers. The roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties are discussed. Also included are case studies drawn from a variety of applications: semiconductor diodes and optical detectors, sensors, thin films, biomaterials, composites and cellular materials, and others.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Fitzgerald, Eugene
Gibson, Lorna
Date Added:
09/01/2007
Elektronische Signaalbewerking
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Na het behalen van dit vak kan de student:

filter-overdrachtsfuncties middels state-space synthese afbeelden op filter-topologieen, deze optimaliseren m.b.t. dynamisch bereik en gevoeligheid voor componenten-variaties en realiseren met behulp van integratoren;
circuits voor integratoren, analoge filters, continue-tijd filters, en nullors (operationele versterkers) ontwerpen en effecten ten gevolge van niet-ideale componenten en aliasing analyseren

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr.ir. W.A. Serdijn
Date Added:
08/14/2014
Elementary Data Structures
Unrestricted Use
CC BY
Rating
0.0 stars

In this course, the student will learn the theoretical and practical aspects of algorithms and Data Structures. The student will also learn to implement Data Structures and algorithms in C/C++, analyze those algorithms, and consider both their worst-case complexity and practical efficiency. Upon successful completion of this course, students will be able to: Identify elementary Data Structures using C/C++ programming languages; Analyze the importance and use of Abstract Data Types (ADTs); Design and implement elementary Data Structures such as arrays, trees, Stacks, Queues, and Hash Tables; Explain best, average, and worst-cases of an algorithm using Big-O notation; Describe the differences between the use of sequential and binary search algorithms. (Computer Science 201)

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Elementary Differential Equations with Boundary Value Problems
Unrestricted Use
CC BY
Rating
0.0 stars

Elementary Differential Equations with Boundary Value Problems is written for students in science, engineering, and mathematics who have completed calculus through partial differentiation. If your syllabus includes Chapter 10 (Linear Systems of Differential Equations), your students should have some preparation in linear algebra. In writing this book I have been guided by the these principles: An elementary text should be written so the student can read it with comprehension without too much pain. I have tried to put myself in the student's place, and have chosen to err on the side of too much detail rather than not enough. An elementary text can't be better than its exercises. This text includes 2041 numbered exercises, many with several parts. They range in difficulty from routine to very challenging. An elementary text should be written in an informal but mathematically accurate way, illustrated by appropriate graphics. I have tried to formulate mathematical concepts succinctly in language that students can understand. I have minimized the number of explicitly stated theorems and defonitions, preferring to deal with concepts in a more conversational way, copiously illustrated by 299 completely worked out examples. Where appropriate, concepts and results are depicted in 188 figures

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Textbook
Provider:
Trinity University
Author:
William F. Trench
Date Added:
10/28/2014
Elementary GLOBE: All Year Long
Read the Fine Print
Rating
0.0 stars

Each student will keep a science journal during each of the four seasons. Students will record observations of the general outdoor environment they visit and then will make observations of one specific item from the habitat in each season. At the end of the school year, students will make comparisons of their seasonal drawings and share the results with the class. The purpose of the activity is to introduce students to the concept of using a science journal to record information, to have students use science tools to make scientific observations and to make observational drawings in nature and compare the results throughout the seasons. After completing this activity, students will know about seasonal changes in a particular habitat. They will learn how to make detailed observations, record their results, make comparisons, and share information using a standard format.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
02/16/2011
Elementary GLOBE: Earth System Play
Read the Fine Print
Rating
0.0 stars

The class will brainstorm, write, create, and produce a play in which they represent how all the Earth systems are interconnected. This play can be based on the Elementary GLOBE book "All About Earth: Our World on Stage" or on other student-generated topics representing interconnections of the Earth systems. The purpose of the play is to serve as a performance assessment providing students with the opportunity to display what they have learned about the Earth as a system in a creative manner. Through this activity, students will demonstrate their knowledge of how the hydrosphere, atmosphere, geosphere and biosphere interact.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
02/16/2011
Elementary GLOBE: Earth System in a Bottle
Read the Fine Print
Rating
0.0 stars

A learning activity for the "All About Earth: Our World on Stage" book in the Elementary GLOBE series. In pairs, students will create experimental conditions in terrariums in order to study what plants need to live. Variables to study include the presence or absence of soil, water, and sunlight. Students will record the growth of radish plants as well as observations of "the water cycle" in their terrariums. At the conclusion of their experiments, students will share their results with the class and discuss how water, Earth materials, and air are all necessary to support living things. The purpose of the activity is to acquaint students with the hydrosphere, geosphere, atmosphere, and biosphere more closely, to have students use microcosms to study natural phenomena, and to introduce students to the concept of a "fair test" in a scientific investigation. After completing this activity, students will know about the importance of the hydrosphere, geosphere, and atmosphere in supporting the biosphere. They will learn how to set up "fair test", record detailed observations, use drawings as scientific records, make sense of experimental results, and share them publicly.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
02/16/2011
Elementary GLOBE: Getting to Know Soil
Read the Fine Print
Rating
0.0 stars

A learning activity for the Scoop on Soils book in the Elementary GLOBE Series. Each student will make predictions about the properties of various soil samples. Then they will examine several types of soils and record their observations. Next, they will learn about soil profiles and horizons by both examining a soil sample in a jar and by creating a soil profile flip chart. The purpose of the activity is to provide the opportunity for students to ask questions and make observations about soil and introduce students to the properties of soil and to the concept of soil profiles and horizons. After completing this activity, students will know about soil's different properties and about soil profiles. Students will know that soils have different properties including texture, color, and size. They will know that soil forms layers based on these properties.

Subject:
Applied Science
Environmental Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
02/16/2011
Elementary GLOBE: Honing in on Hummingbirds
Read the Fine Print
Rating
0.0 stars

In this activity, students will record a list of things they already know about hummingbirds and a list of things they would like to learn about hummingbirds. Then they will conduct research to find answers to their questions. Using their new knowledge, each student will make a hummingbird out of art supplies. Finally, using their hummingbirds as props, the students will play charades to test each other in their knowledge of the ruby-throated hummingbirds. The purpose of this activity is to provide students with information on ruby-throated hummingbirds, provide students with the opportunity to conduct research on hummingbirds in topic areas that interest them, and to provide students with opportunities to share their knowledge with other students. By completing this activity, students will gain knowledge about ruby-throated hummingbirds. They will also gain experience researching a topic of their choosing related to hummingbirds and communicating those results in several different formats.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Textbook
Provider:
University Corporation for Atmospheric Research
Date Added:
02/16/2011