Students are introduced to renewable energy, including its relevance and importance to …
Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.
Students use real-world data to evaluate various renewable energy sources and the …
Students use real-world data to evaluate various renewable energy sources and the feasibility of implementing these sources. Working in small groups, students use data from the Renewable Energy Living Lab to describe and understand the way the world works. The data is obtained through observation and experimentation. Using the living lab gives students and teachers the opportunity to practice analyzing data to solve problems or answer questions, in much the same way that scientists and engineers do every day.
Students analyze real-world data for five types of renewable energy, as found …
Students analyze real-world data for five types of renewable energy, as found on the online Renewable Energy Living Lab. They identify the best and worst locations for production of each form of renewable energy, and then make recommendations for which type that state should pursue.
Students become familiar with the online Renewable Energy Living Lab interface and …
Students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations. They become familiar with where the most common sources of renewable energy are distributed across the U.S. Through this activity, students and teachers gain familiarity with the living lab's GIS graphic interface and query functions, and are exposed to the available data in renewable energy databases, learning how to query to find specific information for specific purposes. The activity is intended as a "training" activity prior to conducting activities such as The Bright Idea activity, which includes a definitive and extensive end product (a feasibility plan) for students to create.
Students use real-world data to calculate the potential for solar and wind …
Students use real-world data to calculate the potential for solar and wind energy generation at their school location. After examining maps and analyzing data from the online Renewable Energy Living Lab, they write recommendations as to the optimal form of renewable energy the school should pursue.
Students use real-world data to evaluate whether solar power is a viable …
Students use real-world data to evaluate whether solar power is a viable energy alternative for several cities in different parts of the U.S. Working in small groups, they examine maps and make calculations using NREL/US DOE data from the online Renewable Energy Living Lab. In this exercise, students analyze cost and availability for solar power, and come to conclusions about whether solar power is a good solution for four different locations.
Students use real-world data to evaluate the feasibility of solar energy and …
Students use real-world data to evaluate the feasibility of solar energy and other renewable energy sources in different U.S. locations. Working in small groups, students act as engineers evaluating the suitability of installing solar panels at four company locations. They access data from the online Renewable Energy Living Lab from which they make calculations and analyze how successful solar energy generation would be, as well as the potential for other power sources at those locations. Then they summarize their results, analysis and recommendations in the form of feasibility plans prepared for a CEO.
Students learn about how biomedical engineers aid doctors in repairing severely broken …
Students learn about how biomedical engineers aid doctors in repairing severely broken bones. They learn about using pins, plates, rods and screws to repair fractures. They do this by designing, creating and testing their own prototype devices to repair broken turkey bones.
Over several days, students learn about composites, including carbon-fiber-reinforced polymers, and their …
Over several days, students learn about composites, including carbon-fiber-reinforced polymers, and their applications in modern life. This prepares students to be able to put data from an associated statistical analysis activity into context as they conduct meticulous statistical analyses to evaluate/determine the effectiveness of carbon fiber patches to repair steel. This lesson and its associated activity are suitable for use during the last six weeks of an AP Statistics course; see the topics and timing note for details. A PowerPoint® presentation and post-quiz are provided.
Student pairs reverse engineer objects of their choice, learning what it takes …
Student pairs reverse engineer objects of their choice, learning what it takes to be an engineer. Groups each make a proposal, create a team work contract, use tools to disassemble a device, and sketch and document their full understanding of how it works. They compile what they learned into a manual and write-up that summarizes the object's purpose, bill of materials and operation procedure with orthographic and isometric sketches. Then they apply some of the steps of the engineering design process to come up with ideas for how the product or device could be improved for the benefit of the end user, manufacturer and/or environment. They describe and sketch their ideas for re-imagined designs (no prototyping or testing is done). To conclude, teams compile full reports and then recap their reverse engineering projects and investigation discoveries in brief class presentations. A PowerPoint(TM) presentation, written report and oral presentation rubrics, and peer evaluation form are provided.
Students write a biographical sketch of an artist or athlete who lives …
Students write a biographical sketch of an artist or athlete who lives on the edge, riding the gravity wave, to better understand how these artists and athletes work with gravity and manage risk. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.
Through this lesson students learn how AM radios work through basic concepts …
Through this lesson students learn how AM radios work through basic concepts about waves and magnetic fields. Waves are first introduced by establishing the difference between transverse and longitudinal waves, as well as identifying the amplitude and frequency of a given waveform. Students then learn general concepts about magnetic fields, leading into how radio waves are created and transmitted. Several demonstrations can be performed in order to help students better understand these concepts. The goal of this lesson is for students to understand how the AM radios built during the associated activity function.
Students experience the engineering design process as they design and build accurate …
Students experience the engineering design process as they design and build accurate and precise catapults using common materials. They use their catapults to participate in a game in which they launch Ping-Pong balls to attempt to hit various targets.
Students learn the concept of angular momentum and its correlation to mass, …
Students learn the concept of angular momentum and its correlation to mass, velocity and radius. They experiment with rotation and an object's mass distribution. In an associated literacy activity, students use basic methods of comparative mythology to consider why spinning and weaving are common motifs in creation myths and folktales.
Students learn how water is used to generate electricity. They investigate water's …
Students learn how water is used to generate electricity. They investigate water's potential-to-kinetic energy transformation in hands-on activities about falling water and waterwheels. During the activities, they take measurements, calculate averages and graph results. Students also learn the history of the waterwheel and how engineers use water turbines in hydroelectric power plants today. They discover the advantages and disadvantages of hydroelectric power. In a literacy activity, students learn and write about an innovative new hydro-electrical power generation technology.
Through the two lessons and five activities in this unit, students' knowledge …
Through the two lessons and five activities in this unit, students' knowledge of sensors and motors is integrated with programming logic as they perform complex tasks using LEGO MINDSTORMS(TM) NXT robots and software. First, students are introduced to the discipline of engineering and "design" in general terms. Then in five challenge activities, student teams program LEGO robots to travel a maze, go as fast/slow as possible, push another robot, follow a line, and play soccer with other robots. This fifth unit in the series builds on the previous units and reinforces the theme of the human body as a system with sensors performing useful functions, not unlike robots. Through these design challenges, students become familiar with the steps of the engineering design process and come to understand how science, math and engineering including computer programming are used to tackle design challenges and help people solve real problems. PowerPoint® presentations, quizzes and worksheets are provided throughout the unit.
Students continue to build a rigorous background in human sensors and their …
Students continue to build a rigorous background in human sensors and their engineering equivalents by learning about electronic touch, light, sound and ultrasonic sensors that measure physical quantities somewhat like eyes, ears and skin. Specifically, they learn about microphones as one example of sound sensors, how sounds differ (intensity, pitch) and the components of sound waves (wavelength, period, frequency, amplitude). Using microphones connected to computers running (free) Audacity® software, student teams experiment with machine-generated sounds and their own voices and observe the resulting sound waves on the screen, helping them to understand that sounds are waves. Students take pre/post quizzes, complete a worksheet and watch two short online videos about "seeing" sound.
Students learn how two LEGO MINDSTORMS(TM) NXT intelligent bricks can be programmed …
Students learn how two LEGO MINDSTORMS(TM) NXT intelligent bricks can be programmed so that one can remotely control the other. They learn about the components and functionality in the (provided) controller and receiver programs. When its buttons are pressed, the NXT brick assigned as the remote control device uses the controller program to send Bluetooth® messages. When the NXT taskbot/brick assigned as the receiver receives certain Bluetooth messages, it moves, as specified by the receiver program. Students examine how the programs and devices work in tandem, gaining skills as they play "robot soccer." As the concluding activity in this unit, this activity provides a deeper dimension of understanding programming logic compared to previous activities in this unit and introduces the relatively new and growing concept of wireless communication. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.
Students solidify their understanding of the terms "circumference" and "rotation" through the …
Students solidify their understanding of the terms "circumference" and "rotation" through the use of LEGO MINDSTORMS(TM) NXT robotics components. They measure the circumference of robot wheels to determine how far the robot can travel during one rotation of an NXT motor. They sharpen their metric system measurement skills by precisely recording the length of a wheel's circumference in centimeters, as well as fractions of centimeters. Through this activity, students practice brainstorming ways to solve a problem when presented with a given scenario, improve their ability to measure and record lengths to different degrees of precision, and become familiar with common geometric terms (such as perimeter and rotation).
Students groups act as NASA/GM engineers challenged to design, build and test …
Students groups act as NASA/GM engineers challenged to design, build and test robotic hands, which are tactile feedback systems made from cloth gloves and force sensor circuits. Student groups construct force sensor circuits using electric components and FlexiForce sensors to which resistance changes based on the applied force. They conduct experiments to find the mathematical relationship between the force applied to the sensor and the output voltages of the circuit. They take several measurements force vs. resistance, force vs. voltage and use the data to find the best fit curve models for the sensor. Different weights applied to the sensor are used as a scalable force. Students use traditional methods and current technology (calculators) to plot the collected data and define the curve equations. Students test their gloves and use a line of best fit to determine the minimum force required to crack an egg held between the index finger and thumb. A PowerPoint(TM) file and many student handouts are included.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.