Students explore the concept of "reducing" solid waste and how it relates …
Students explore the concept of "reducing" solid waste and how it relates to product packaging and engineering advancements in packaging materials. They read about and evaluate the highly publicized packaging decisions of two major U.S. corporations. Then they evaluate different ways to package items in order to minimize the environmental impact, while considering issues such as cost, availability, product attractiveness, etc. In addition, students explore "hydropulping" and consider its use as a recycling process.
Students identify types and sources of indoor air pollutants in their school …
Students identify types and sources of indoor air pollutants in their school and home environments. They evaluate actions that can be taken to reduce and prevent poor indoor air quality. In an associated literacy activity, students develop a persuasive peer-to-peer case against smoking with the goal to understand how language usage can influence perception, attitudes and behavior.
Student teams are challenged to design models of Egyptian funerary barges for …
Student teams are challenged to design models of Egyptian funerary barges for the purpose of transporting mummies through the underworld to the afterlife. Planning the boat designs requires an understanding of ancient culture and beliefs so the mummies are transported safely through the perils of the underworld. Students design and build prototypes using materials and tools like the ancient Egyptians had at their disposal. Then they do the same with modern materials and techniques, forming an awareness of the similarities and differences of the barge designs between the ancient materials and tools (technologies) and today's technologies, which are evolved from the earlier ways.
Students explore the inhalation/exhalation process that occurs in the lungs during respiration. …
Students explore the inhalation/exhalation process that occurs in the lungs during respiration. Using everyday materials, each student team creates a model pair of lungs.
Through multi-trial experiments, students are able to see and measure something that …
Through multi-trial experiments, students are able to see and measure something that is otherwise invisible to them seeing plants breathe. Student groups are given two small plants of native species and materials to enclose them after watering with colored water. After being enclosed for 5, 10 and 15 minutes, teams collect and measure the condensed water from the plants' "breathing," and then calculate the rates at which the plants breathe. A plant's breath is known as transpiration, which is the flow of water from the ground where it is taken up by roots (plant uptake) and then lost through the leaves. Students plot volume/time data for three different native plant species, determine and compare their transpiration rates to see which had the highest reaction rate and consider how a plant's unique characteristics (leaf surface area, transpiration rate) might figure into engineers' designs for neighborhood stormwater management plans.
This lesson introduces students to three of the six simple machines used …
This lesson introduces students to three of the six simple machines used by many engineers. These machines include the inclined plane, the wedge and the screw. In general, engineers use the inclined plane to lift heavy loads, the wedge to cut materials apart, and the screw to convert rotational motion into linear movement. Furthermore, the mechanical advantage describes how easily each machine can do work and is determined by its physical dimensions.
Student teams design insulated beverage bottles with the challenge to test them …
Student teams design insulated beverage bottles with the challenge to test them to determine which materials (and material thicknesses) work best at insulating hot water to keep it warm for as long as possible. Students test and compare their designs in still air and under a stream of moving air from a house fan.
Students act as engineers to apply what they know about how circuits …
Students act as engineers to apply what they know about how circuits work in electrical/motorized devices to design their own battery-operated model motor vehicles with specific paramaters. They calculate the work done by the vehicles and the power produced by their motor systems.
In this lesson, students develop an understanding of the critical role communication …
In this lesson, students develop an understanding of the critical role communication plays in an engineer's life. Students create products to communicate their learning about the engineering role in the environment.
How do we communicate with each other? How do we communicate with …
How do we communicate with each other? How do we communicate with people who are close by? How do we communicate with people who are far away? In this lesson, students will explore the role of communications and how satellites help people communicate with others far away and in remote areas with nothing around (i.e., no obvious telecommunications equipment). Students will learn about how engineers design satellites to benefit life on Earth. This lesson also introduces the theme of the rockets curricular unit.
Students learn how roadways are designed and constructed, and discuss the advantages …
Students learn how roadways are designed and constructed, and discuss the advantages and limitations of the current roadway construction process. They look at current practices of roadway monitoring, discuss the limitations, and consider ways to further road monitoring research. To conclude, student groups compete to design smooth, cost-efficient and sound model road bases using gravel, sand, water and rubber (representing asphalt). This lesson prepares students for the associated activity in which they act as civil engineers hired by USDOT to research through their own model experimentation how to best use piezoelectric materials to detect road damage by showing how piezoelectric transducers can indicate road damage.
In this activity, students filter different substances through a plastic window screen, …
In this activity, students filter different substances through a plastic window screen, different sized hardware cloth and poultry netting. Their model shows how the thickness of a filter in the kidney is imperative in deciding what will be filtered out and what will stay within the blood stream.
Students learn how crystallization and inhibition occur by examining calcium oxalate crystals …
Students learn how crystallization and inhibition occur by examining calcium oxalate crystals with and without inhibitors that are capable of altering crystallization. Kidney stones are composed of calcium oxalate crystals, and engineers and doctors experiment with these crystals to determine how growth is affected when a potential drug is introduced. Students play the role of engineers by trying to determine which inhibitor would be the best for blocking crystallization.
In this lesson, students are introduced to both potential energy and kinetic …
In this lesson, students are introduced to both potential energy and kinetic energy as forms of mechanical energy. A hands-on activity demonstrates how potential energy can change into kinetic energy by swinging a pendulum, illustrating the concept of conservation of energy. Students calculate the potential energy of the pendulum and predict how fast it will travel knowing that the potential energy will convert into kinetic energy. They verify their predictions by measuring the speed of the pendulum.
Waste disposal has been an ongoing problem since medieval times. Environmental engineers …
Waste disposal has been an ongoing problem since medieval times. Environmental engineers are employed to develop technologies to dispose of the enormous amount of trash produced in the United States. In this lesson, students will learn about the three methods of waste disposal in use by modern communities. They will also investigate how engineers design sanitary landfills to prevent leachate from polluting the underlining groundwater.
Students learn about landslides, discovering that there are different types of landslides …
Students learn about landslides, discovering that there are different types of landslides that occur at different speeds from very slow to very quick. All landslides are the result of gravity, friction and the materials involved. Both natural and human-made factors contribute to landslides. Students learn what makes landslides dangerous and what engineers are doing to prevent and avoid landslides.
Students learn and use the properties of light to solve the following …
Students learn and use the properties of light to solve the following challenge: "A mummified troll was discovered this summer at our school and it has generated lots of interest worldwide. The principal asked us, the technology classes, to design a security system that alerts the police if someone tries to pilfer our prized possession. How can we construct a system that allows visitors to view our artifact during the day, but invisibly protects it at night in a cost-effective way?"
Through two classroom demos, students are introduced to the basic properties of …
Through two classroom demos, students are introduced to the basic properties of lasers through various mediums. In the Making an Electric Pickle demonstration, students see how cellular tissue is able to conduct electricity, and how this is related to various soaking solutions. In the Red/Green Lasers through Different Mediums demonstration, students see the properties of lasers, especially diffraction, in various mediums. Follow-up lecture material introduces students to the mechanisms by which lasers function and relates these functions to the properties of light. In the associated activity, student teams research specific laser types and present their findings to the class.
Students research particular types of lasers and find examples of how they …
Students research particular types of lasers and find examples of how they are used in technology today. Teams present their findings by means of PowerPoint presentations, videos or brochures. The class takes notes on the presentations using a provided handout. This activity prepares students for the "go public" phase of the legacy cycle in which they solve the grand challenge by designing and producing a laser-based security system.
Students gain perspective on the intended purpose of hydraulic accumulators and why …
Students gain perspective on the intended purpose of hydraulic accumulators and why they might be the next best innovation for hybrid passenger vehicles. They learn about how hydraulic accumulators and hydraulic systems function, specifically how they conserve energy by capturing braking energy usually lost as heat. Students are given the engineering challenge to create small-scale models from which their testing results could be generalized to large-scale latex tubing for a hydraulic accumulator. After watching a video clip of an engineer talking about his lab-based model to test the feasibility of using an elastomer as an energy accumulator, they brainstorm ideas about how latex can be used in a hydraulic system and how they could test the strength of latex for use in a hydraulic accumulator. The concepts of kinetic energy and energy density are briefly discussed.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.