In this problem-based learning activity, students learn about global precipitation patterns. They …
In this problem-based learning activity, students learn about global precipitation patterns. They assume the role of climatologists and teach a newspaper reporter about the scientific method, explore how rainfall patterns impact society using TRMM (Tropical Rainfall Measuring Mission) satellite data, and brainstorm needed weather instruments to be built in the future. The resource includes teacher notes, student worksheet, glossary and an appendix introducing problem-based learning. This resource is the third of the 3-part learning module, Investigating the Climate System:Precipitation.
In this lesson about cosmic rays, students will describe why cosmic rays …
In this lesson about cosmic rays, students will describe why cosmic rays are dangerous to astronauts. Includes information about student preconceptions. This is activity 3 of 4 from "The Cosmic Ray Telescope for the Effects of Radiation (CRaTER)."
This demonstration shows that an increase in temperature will speed up the …
This demonstration shows that an increase in temperature will speed up the water cycle. One outcome will be an increase in rainfall. A second outcome will be the increase in total evaporation of water and subsequent drought. Materials required include two aquariums, plastic wrap, 2 clamp lamps with 60 watt light bulbs, pebbles and rocks, modeling clay, blue food coloring, and water. Student worksheets, background information for teachers, and a scoring rubric are included. This is Activity 2 in Too Many Blankets, a module in the lesson series, Potential Consequences of Climate Variability and Change.
This is a lesson about representative sampling. When given parts of the …
This is a lesson about representative sampling. When given parts of the Hubble Deep Field image, learners will count the number of galaxies in one sample section of the image. Then, they will calculate how many galaxies there are in each whole image and how many objects the Hubble Space Telescope could see in the entire Universe. This is Activity H-6 of Universe at Your Fingertips 2.0: A Collection of Activities and Resources for Teaching Astronomy DVD-ROM, which is available for purchase.
In this problem-based learning (PBL) activity, students take on the role of …
In this problem-based learning (PBL) activity, students take on the role of a student research scientist and explore the role of solar energy in determining climate. Students conduct experiments to observe how a change in water phase affects surface temperatures. Materials required for the investigation include 2 aquariums, dry sand or soil, two heat lamps, and two thermometers.The lesson is supported by teacher notes, answer key, glossary and an appendix with information about using PBL in the classroom. This is the second of three activities in Investigating the Climate System: Energy, a Balancing Act.
In this problem-based learning activity, students learn how the intensity and distribution …
In this problem-based learning activity, students learn how the intensity and distribution of rainfall and the structure of clouds are critical information for flight navigators. Students assume the role of climatologists and assist a newspaper reporter in determining the veracity of a pilot's statement about weather conditions he encountered in flight using TRMM (Tropical Rainfall Measuring Mission) satellite data. The resource includes teacher notes, student worksheet, glossary and an appendix introducing problem-based learning. This resource is the second of the 3-part learning module, Investigating the Climate System:Precipitation.
In this problem-based learning activity, students learn about weather forecasting and the …
In this problem-based learning activity, students learn about weather forecasting and the role of the TRMM (Tropical Rainfall Measuring Mission) satellite in data collection. Assuming the role of climatologists, students assist a reporter in determining the accuracy of weather predictions published in The Old Farmer's Almanac. The lesson requires a street map of the local community, acetate sheets to cover the map, materials needed to build a homemade rain gauge, and sample pages of the almanac. Teacher notes, student worksheet, glossary and an appendix introducing problem-based learning are included. This resource is the first of the 3-part learning module, Investigating the Climate System: Precipitation.
In this 2-part inquiry-based lesson, students conduct a literature search to determine …
In this 2-part inquiry-based lesson, students conduct a literature search to determine the characteristics of the atmospheres of different planets (Venus, Mercury, Mars and Earth). After collecting and analyzing data, student teams design and conduct a controlled physical experiment using a lab apparatus to learn about the interaction of becomes CO², air, and temperature. The resource includes student worksheets, a design proposal, and student questions. Connections to contemporary climate change are addressed. This lesson is the first of four in Topic 4, "How do Atmospheres Affect Planetary Temperatures?" within the resource, Earth Climate Course: What Determines a Planet's Climate?
In this kinesthetic activity, the concept of energy budget is strengthened as …
In this kinesthetic activity, the concept of energy budget is strengthened as students conduct three simulations using play money as units of energy, and students serve as parts of a planetary radiation balance model. Students will determine the energy budget of a planet by manipulating gas concentrations, energy inputs and outputs in the system in this lesson that supports the study of climate on Mars, Mercury, Venus and Earth. The lesson supports understanding of the real-world problem of contemporary climate change. The resource includes a teacher's guide and several student worksheets. This is the second of four activities in the lesson, How do Atmospheres affect planetary temperatures?, within Earth Climate Course: What Determines a Planet's Climate? The resource aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales.
In this activity, students simulate the interaction of variables, including carbon dioxide, …
In this activity, students simulate the interaction of variables, including carbon dioxide, in a radiation balance exercise using a spreadsheet-based radiation balance model. Through a series of experiments, students attempt to mimic the surface temperatures of Earth, Mercury, Venus and Mars, and account for the influence of greenhouse gases in atmospheric temperatures. The activity supports inquiry into the real-world problem of contemporary climate change. Student-collected data is needed from activity A in the same module, "How do atmospheres interact with solar energy?" to complete this activity. Included in the resource are several student data sheets and a teacher's guide. This activity is part of module 4, "How do Atmospheres Affect Planetary Temperatures?" in Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales.
In this demonstration, students explore the concept of greenhouse warming. They determine …
In this demonstration, students explore the concept of greenhouse warming. They determine whether an increase in the amount of heat-trappping gases in the atmosphere can cause the temperature on Earth to rise. Students compare the relative heat retention in two experimental systems that are identical except for one being covered with plastic wrap. Materials required include two small aquarium tanks, plastic wrap, two clamp lamps with 60 watt bulbs, modeling clay, rocks and pebbles, and two thermometers. Teacher background information, student worksheets and a scoring rubric are included. This is Activity 1 of the module Too Many Blankets, part of the lesson series, The Potential Consequences of Climate Variability and Change.
In this lesson on cosmic rays, students will explain two examples of …
In this lesson on cosmic rays, students will explain two examples of a cosmic ray detector. Includes information about student preconceptions and a demonstration that requires a geiger counter and optional access to a small radioactive source that emits energetic helium nuclei (alpha particles), e.g., the mineral the mineral autunite, which contains uranium. This is activity two of four from The Cosmic Ray Telescope for the Effects of Radiation (CRaTER).
Would you like to learn how to make your own Demo-2 to …
Would you like to learn how to make your own Demo-2 to launch in your home? Watch this tutorial to learn how.
All you will need is paper, markers, scissors, tape, yarn or ribbon (optional) and a straw.
How are you preparing to #LaunchAmerica? From building your own rocket to binge-watching launch videos, share a video, a photo or simply your thoughts using #LaunchAmerica for a chance to be featured on our social media platforms.
This video is available for download from NASA's Image and Video Library
This resource is a 4 x 6" lenticular card on NASA's HS3 …
This resource is a 4 x 6" lenticular card on NASA's HS3 (Hurricane and Severe Storm Sentinel) aircraft mission, which will overfly tropical storms and hurricanes using NASA's Global Hawk Unmanned Aircraft Systems (UAS) in the Northern Atlantic, Caribbean, and Gulf of Mexico. These flights will improve our understanding of the processes that lead to the development of intense hurricanes. The mission will take place for one-month periods during the 2012, 2013, and 2014 Atlantic Basin hurricane seasons.
Create your own impact craters! When astronauts visit the Moon for the …
Create your own impact craters! When astronauts visit the Moon for the Artemis III missions, they will be able to study the craters that may contain water and ice. Testing and studying these craters may help NASA identify areas on the Moon that are rich in water and other resources to determine how to best use those materials while on the lunar surface.
This 24 minute planetarium show teaches about meteors, meteorites, asteroids, and comets. …
This 24 minute planetarium show teaches about meteors, meteorites, asteroids, and comets. The show was created for fulldome theaters, but is also available on DVD to be shown in flat version for TVs and computer monitors, and can be freely viewed online. It shows the effects of the Chixulub and Tungusta events, plus the Pallasite impact that resulted in the Brenham meteorite fall, and describes ways that asteroid hunters seek new objects in the solar system, and how ground penetrating radar is used to find meteorites that have survived to the Earth's surface. Narrated by astronaut Tom Jones, it also discusses ways that humans might try to deflect an asteroid or comet that is on a collision course with Earth. The show was created for informal science venues (digital planetariums); it is also useful as supplemental material for middle school science. Impact Earth is available for free if presented directly from the Space Update site (widescreen or fisheye views linked from YouTube). Otherwise, a DVD of the show can be purchased for $10.
In this activity, learners explore the size and scale of the universe …
In this activity, learners explore the size and scale of the universe by shrinking cosmic scale in 4 steps, zooming out from the realm of the Earth and Moon to the realm of the galaxies. This informational brochure was designed as a follow-up take-home activity for teen and adult audiences. It can follow informal education activities where participants have experienced related space science programming. This activity allows participants to explore ideas of size and scale in the universe at their own pace.
This is a set of three, one-page problems about the size and …
This is a set of three, one-page problems about the size and area of solar panels used to generate power. Learners will will use integer arithmetic to tally the number of hydrogen, oxygen and carbon atoms in a molecule and determine the number of methane atoms that can result. Options are presented so that students may learn about how NASA is using signs of methane gas to search for life on other planets, such as Mars, through a NASA press release or about how astrobiologists who are looking for life beyond Earth are using spectroscopy to identify methane plumes on Mars by viewing a NASA eClips video [7 min.]. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.