This task is intended to help model a concrete situation with geometry. …
This task is intended to help model a concrete situation with geometry. Placing the seven pennies in a circular pattern is a concrete and fun experiment which leads to a genuine mathematical question: does the physical model with pennies give insight into what happens with seven circles in the plane?
This task provides a concrete geometric setting in which to study rigid …
This task provides a concrete geometric setting in which to study rigid transformations of the plane. It is important for students to be able to visualize and execute these transformations and for this purpose it would be beneficial to have manipulatives and it will important that the students be able to label the vertices of the hexagon with which they are working.
Students gain experience and practice with three types of word problems using …
Students gain experience and practice with three types of word problems using the "Take From" context: result unknown, change unknown, and start unknown.
This task requires students to be able to reason abstractly about fraction …
This task requires students to be able to reason abstractly about fraction multiplication as it would not be realistic for them to solve it using a visual fraction model. Even though the numbers are too messy to draw out an exact picture, this task still provides opportunities for students to reason about their computations to see if they make sense.
Students should think of different ways the cylindrical containers can be set …
Students should think of different ways the cylindrical containers can be set up in a rectangular box. Through the process, students should realize that although some setups may seem different, they result is a box with the same volume. In addition, students should come to the realization (through discussion and/or questioning) that the thickness of a cardboard box is very thin and will have a negligible effect on the calculations.
This is a foundational geometry task designed to provide a route for …
This is a foundational geometry task designed to provide a route for students to develop some fundamental geometric properties that may seem rather obvious at first glance. In this case, the fundamental property in question is that the shortest path from a point to a line meets the line at a right angle, which is crucial for many further developments in the subject.
The purpose of this task is to have students complete normal distribution …
The purpose of this task is to have students complete normal distribution calculations and to use properties of normal distributions to draw conclusions. The task is designed to encourage students to communicate their findings in a narrative/report form in context Đ not just simply as a computed number.
This word problem is based estimating the height of a person over …
This word problem is based estimating the height of a person over time. Note that there is a significant amount of rounding in the final answer. This is because people almost never report their heights more precisely than the closest half-inch. If we assume that the heights reported in the task stem are rounded to the nearest half-inch, then we should report the heights given in the solution at the same level of precision.
Why do the lights turn on in a room as soon as you flip a switch? Flip the switch and electrons slowly creep along a wire. The light turns on when the signal reaches it.
It is possible to say a lot about the solution to an …
It is possible to say a lot about the solution to an equation without actually solving it, just by looking at the structure and operations that make up the equation. This exercise turns the focus away from the familiar Ňfinding the solutionÓ problem to thinking about what it really means for a number to be a solution of an equation.
Is it a tumor? Magnetic Resonance Imaging (MRI) can tell. Your head …
Is it a tumor? Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.
This problem is a quadratic function example. The other tasks in this …
This problem is a quadratic function example. The other tasks in this set illustrate F.BF.1a in the context of linear (Kimi and Jordan), exponential (Rumors), and rational (Summer Intern) functions.
This unit uses the slinky seismometer as a means of studying physics …
This unit uses the slinky seismometer as a means of studying physics concepts such as waves, sound and the speed of sound vs speed of light, resonance, electricity and magnetism, Lenz Law and magnetic dampening (backwards engineering). Students experiment with the basic parts of the seismometer and either build or connect the seismometer to the internet to take and upload data.
The purpose of this task is to lead students through an algebraic …
The purpose of this task is to lead students through an algebraic approach to a well-known result from classical geometry, namely, that a point X is on the circle of diameter AB whenever _AXB is a right angle.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.