Updating search results...

Search Resources

16 Results

View
Selected filters:
  • WY.SCI.HS.LS1.5 - Use a model to illustrate how photosynthesis transforms light energy i...
  • WY.SCI.HS.LS1.5 - Use a model to illustrate how photosynthesis transforms light energy i...
Biometry Protocol
Read the Fine Print
Rating
0.0 stars

The purpose of this resource is to measure and classify the plant life at a Land Cover Site to help determine the MUC classification.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Lesson Plan
Teaching/Learning Strategy
Provider:
The GLOBE Program
Provider Set:
GLOBE Teacher's Guide NGSS Aligned Records
Date Added:
01/09/2007
Biometry Protocol
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this resource is to measure and classify the plant life at a Land Cover Site to help determine the MUC classification.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Interactive
Provider:
UCAR Staff
Provider Set:
GLOBE Teacher's Guide NGSS Aligned Records
Author:
The GLOBE Program, University Corporation for Atmospheric Research (UCAR)
Date Added:
08/01/2003
Budburst Protocol
Read the Fine Print
Rating
0.0 stars

The purpose of this resource is to observe budburst on selected trees at a Land Cover or Phenology Site. All students will learn about hummingbird natural history and ecology. Students will learn how to identify and age male and female Ruby-throated Hummingbirds and to observe migration and feeding behavior. Students will learn how to make connections among hummingbird behavior and weather, climate, food availability, seasonality, photoperiod (day length), and other environmental factors.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson Plan
Teaching/Learning Strategy
Provider:
The GLOBE Program
Author:
The GLOBE Program
University Corporation for Atmospheric Research (UCAR)
Date Added:
01/09/2007
Dye Sensitized Solar Cell
Unrestricted Use
Public Domain
Rating
0.0 stars

This is a solar cell lab that works well with the topic of photosynthesis in the biology classroom and introduces the concept of nanotechnology.  

Subject:
Biology
Material Type:
Activity/Lab
Author:
Integrated Nanosystems Development Institute (INDI)
Date Added:
07/13/2021
Fire Fuel Protocol
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of the resource is to measure the different types of fuels for fires.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Interactive
Provider:
UCAR Staff
Provider Set:
GLOBE Teacher's Guide NGSS Aligned Records
Author:
The GLOBE Program, University Corporation for Atmospheric Research (UCAR)
Date Added:
08/01/2003
Fuel Cell Car: Use Water for Energy! A lesson in Cell Respiration, Energy Flow, Photosynthesis
Unrestricted Use
Public Domain
Rating
0.0 stars

This lesson will expose Biology students to mechanisms of energy by using a wind turbine demonstration and a fuel cell car student lab.  Fuel Cell kits will need to be purchased for this activity.  

Subject:
Biology
Material Type:
Activity/Lab
Author:
Integrated Nanosystems Development Institute (INDI)
Date Added:
07/13/2021
Green-Down Protocol
Read the Fine Print
Rating
0.0 stars

The purpose of this resource is to observe plant green-down and report greendown data to help validate estimates of the end of the plant growing season. Students monitor the change in color of selected leaves of trees, shrubs or grasses.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson Plan
Teaching/Learning Strategy
Provider:
UCAR Staff
Provider Set:
GLOBE Teacher's Guide NGSS Aligned Records
Author:
The GLOBE Program, University Corporation for Atmospheric Research (UCAR)
Date Added:
01/09/2007
Green-Up Protocol
Read the Fine Print
Rating
0.0 stars

The purpose of this resource is to observe plant green-up and report data that will be used by scientists to validate satellite estimates of the beginning of the plant growing season. Students monitor budburst and growth of leaves of selected trees, shrubs, or grasses. Species chosen should be native, deciduous, and dominant in your area.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson Plan
Teaching/Learning Strategy
Provider:
UCAR Staff
Provider Set:
GLOBE Teacher's Guide NGSS Aligned Records
Author:
The GLOBE Program, University Corporation for Atmospheric Research (UCAR)
Date Added:
01/09/2007
High School Integrated Physics and Chemistry Course
Unrestricted Use
CC BY
Rating
0.0 stars

The High School Integrated Conceptual Science Program (ICSP) is a NGSS-aligned curriculum that utilizes the conceptual progressions model for bundling of the NGSS, High School Conceptual Model Course 1 and strategies from Ambitious Science Teaching (AST) to focus on teaching practices needed to engage students in science discourse and learning. Course 1 is the High School Integrated Physics and Chemsitry Course.   The goal of these units is to encourage students to continue in STEM by providing engaging and aligned curriculum. The focus of this year long course is on the first year of high school (freshman).  While the course is designed to be taught as a collection of the units, each unit could be taught as a separate unit in a science course.  A video about the new course shared its unique approach to learning and teaching. Wenatchee School District, one of the participating districts, wanted a way to share the program with the community. https://youtu.be/9AGk19YUi2oCourse 1 of the ICSP development was funded by Northwest Earth and Space Sciences Pipeline (NESSP) which is funded through the NASA Science Mission Directorate and housed with Washington NASA Space Grant Consortium at the University of Washington.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Assessment
Full Course
Lesson
Module
Unit of Study
Author:
Carissa Haug
MECHELLE LALANNE
Date Added:
06/01/2020
NCESD Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

The Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry is a three dimensional course based on the Conceptual Progression Model of the Next Generation Science Standards. It is designed to be used as part of a three course program that addresses all high school science performance expectations. Course 1 is designed for ninth grade students.
This resource includes the teacher materials, supporting documents, and short videos to support teachers in using the materials.
The Courses were designed using the Ambitious Science Teaching (AST) framework. It is strongly encouraged that before using these materials that you be familiar with AST. We suggest that you watch the AST Overview short video found here: https://datapuzzles.org/ambitious-science-teaching and explore this Google Slide deck that contains many resources designed to further your understanding of AST: https://docs.google.com/presentation/d/1WOUVmlm636_7i2l0GYa9JkX1TCK3NMdySfpxKN7IM7A/edit?usp=sharing

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Author:
Carissa Haug
Lisa Monahan
Mechelle LaLanne
NCESD contributors
Date Added:
04/13/2021
Ocean Acidification: A Systems Approach to a Global Problem
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this curriculum module, students in high school life science, marine science, and/or chemistry courses act as interdisciplinary scientists and delegates to investigate how the changing carbon cycle will affect the oceans along with their integral populations.

The oceans cover 70 percent of the planet and play a critical role in regulating atmospheric carbon dioxide through the interaction of physical, chemical, and biological processes. As a result of anthropogenic activity, a doubling of the atmospheric CO2 concentration (to 760 ppm) is expected to occur by the end of this century. A quarter of the total CO2 emitted has already been absorbed by the surface oceans, changing the marine carbonate system, resulting in a decrease in pH, a change in carbonate-ion concentrations, and a change in the speciation of macro and micronutrients. The shift in the carbonate system is already drastically affecting biological processes in the oceans and is predicted to have major consequences on carbon export to the deep ocean with reverberating effects on atmospheric CO2. Put in simple terms, ocean acidification is a complex phenomenon with complex consequences. Understanding complexity and the impact of ocean acidification requires systems thinking – both in research and in education. Scientific advancement will help us better understand the problem and devise more effective solutions, but executing these solutions will require widespread public participation to mitigate this global problem.

Through these lessons, students closely model what is occurring in laboratories worldwide and at Institute for Systems Biology (ISB) through Monica Orellana’s research to analyze the effect CO2 has on ocean chemistry, ecosystems and human societies. Students experiment, analyze public data, and prepare for a mock summit to address concerns. Student groups represent key “interest groups” and design two experiments to observe the effects of CO2 on seawater pH, diatom growth, algal blooms, nutrient availability, and/or shell dissolution.

Subject:
Atmospheric Science
Physical Science
Material Type:
Module
Author:
Aisha McKee
Alexis Boleda
Alexis Valauri-Orton
Allison Lee Cusick
Anna Farrell-Sherman
Baliga Lab
Barbara Steffens
Claudia Ludwig
Danny Thomson
Dexter Chapin
Dina Kovarik
Donald Cho
Eric Grewal
Eric Muhs
Helen Ippolito
Holly Kuestner
Institute for Systems Biology
Jeannine Sieler
Jennifer Duncan-Taylor
Jia Hao Xu
JoAnn Chrisman
Jocelyn Lee
Kedus Getaneh
Kevin Baker
Mari Knutson Herbert
Megan DeVault
Meredith Carlson
Michael Walker
Monica V. Orellana
Nitin S. Baliga
Olachi Oleru
Raisah Vestindottir
Steven Do
Systems Education Experiences
William Harvey
Zac Simon
Date Added:
03/09/2023
Our Invisible Forest: What's in a Drop of Seawater?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Take a breath — where does the oxygen you inhaled come from? In our changing world, will we always have enough oxygen? What is in water that supports life? What is known? How do we know what we know about our vast oceans? These are just a few of the driving questions explored in this interactive STEAM high school curriculum module.

Students in marine science, environmental science, physics, chemistry, biology, integrated science, biotechnology and/or STEAM courses can use this curriculum module in order to use real-world, big data to investigate how our “invisible forest” influences ocean and Earth systems. Students build an art project to represent their new understanding and share this with the broader community.

This 4-week set of lessons is based on the oceanographic research of Dr. Anne Thompson of Portland State University in Oregon, which focuses on the abundant ocean phytoplankton Prochlorococcus. These interdisciplinary STEAM lessons were inspired by Dr. Thompson’s lab and fieldwork as well as many beautiful visualizations of Prochlorococcus, the ocean, and Earth. Students learn about the impact and importance of Prochlorococcus as the smallest and most abundant photosynthetic organism on our planet. Through the lessons, students act as both scientists and artists as they explore where breathable oxygen comes from and consider how to communicate the importance of tiny cells to human survival.

This module is written as a phenomenon-based, Next Generation Science Standards (NGSS) three-dimensional learning unit. Each of the lessons below also has an integrated, optional Project-Based Learning component that guides students as they complete the PBL process. Students learn to model a system and also design and evaluate questions to investigate phenomena. Students ultimately learn what is in a drop of ocean water and showcase how their drop contributes to our health and the stability and dynamics of global systems.

Subject:
Applied Science
Environmental Science
Material Type:
Module
Author:
Amanda Cope
Anne W. Thompson
Baliga Lab
Barbara Steffens
Claudia Ludwig
Emily Borden
Institute for Systems Biology
Jeannine Sieler
Linnea Stavney
Mari Knutson Herbert
Mark Buchli
Michael Walker
Nitin S. Baliga
Portland State University
Uzma Khalil
Date Added:
03/09/2023
Patterns Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Patterns Biology is the culminating course in the 3-year high school Patterns Science sequence. Patterns Biology focuses on three-dimensional (3D) learning through culturally responsive, phenomena-based storylines that intertwine the disciplinary core ideas of biology with the scientific and engineering practices and crosscutting concepts as described in the Next Generation Science Standards (NGSS).

The Patterns High School Science Sequence (https://hsscience4all.org/) is a three year course pathway and curriculum aligned to the Next Generation Science Standards (NGSS).

Each course utilizes:
- Common instructional strategies
- Real world phenomena
- Design challenges to engage students and support their learning.

For more information, contact us at info@pdxstem.org.

The curriculum is a combination of teacher-generated and curated open-content materials. The Teacher-generated materials are shared freely under a Attribution-NonCommercial-Sharealike Creative Commons License.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Portland Metro STEM Partnership
Author:
Jamie Rumage
Date Added:
09/03/2020
Phenological Gardens Protocol
Read the Fine Print
Rating
0.0 stars

The purpose of this resource is to observe the flowering and leaf stages of selected garden plants throughout the year. After a phenological garden is planted, students observe the growth of leaves and blooming of flowers on the plants. These plants were selected because each plant blooms at a different time in the year.

Subject:
Applied Science
Ecology
Environmental Science
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson Plan
Teaching/Learning Strategy
Provider:
UCAR Staff
Provider Set:
GLOBE Teacher's Guide NGSS Aligned Records
Author:
The GLOBE Program, University Corporation for Atmospheric Research (UCAR)
Date Added:
01/09/2007
Sap, Energy, and Syrup
Unrestricted Use
CC BY
Rating
0.0 stars

A very short video introduction to how photosynthesis cycles energy through an ecosystem and a "real-world" application of ratios! Lindsay Hollister, JPPM's horticulturalist, taps a black walnut tree for its sap and park staff boil it down to create syrup. Included in this video are an animated food web showing the directions of energy flow during photosynthesis and when sap is "rising," which can be extended by students to include humans or more parts of their local ecosystem. Use the video as an introduction to activities about sugar and biological storage, and an excuse to sample maple syrup to taste the sugar. Alternatively, research trees nearby students could help tap and witness the biological transfer of energy themselves.

Always be sure you can successfully identify a plant before using it and take precautions to avoid negative reactions.

This resource is part of Jefferson Patterson Park and Museum’s open educational resources project to provide history, ecology, archaeology, and conservation resources related to our 560 acre public park. More of our content can be found here on OER Commons or from our website at jefpat.maryland.gov. JPPM is a part of the Maryland Historical Trust under the Maryland Department of Planning.

Subject:
Biology
Botany
Life Science
Nutrition
Material Type:
Case Study
Diagram/Illustration
Provider:
Jefferson Patterson Park and Museum
Author:
JPPM Admin
Date Added:
02/24/2022