How are we connected to the patterns we see in the sky …
How are we connected to the patterns we see in the sky and space? Students develop models for the Earth-Sun and Earth-Sun-Moon systems that explain some of the patterns in the sky that they have identified, including seasons, eclipses, and lunar phases. They investigate a series of related phenomena motivated by their questions and ideas for investigations.
This unit is part of the OpenSciEd core instructional materials for middle school.
In this unit, students will solve a mystery about changes in oyster …
In this unit, students will solve a mystery about changes in oyster larvae in the Salish Sea, causing oyster farmers to send their larvae to Hawaii until they grow stronger. They will look for clues in: • activities and games, articles, and films that introduce the concepts of habitat and ecosystem • structures and behaviors for survival in intertidal zone habitats • the Earth-moon-sun interactions that drive the tides • the importance of First Foods of the intertidal to first nations communities; • how intertidal organisms interact across the Salish Sea food web Afterward, they will arrive at the importance of a balanced carbon cycle in the health of the ocean and use a full scientific investigation to test if their local waters have a healthy pH for oyster larvae and other shelled creatures. Clear pathways of hope are woven into this complex issue, so students know that scientists and leaders are working to solve this problem - and kids can help!
Members of the Department of Atmospheric Sciences at the University of Illinois …
Members of the Department of Atmospheric Sciences at the University of Illinois Urbana-Champaign have designed a suite of atmospheric science learning modules for middle school students. The curriculum, which implements a flipped-classroom model, is cross-referenced with Common Core and Next Generation Science Standards. It introduces students to topics such as temperature, pressure, severe weather safety, climate change, and air pollution through short instructional videos and critical thinking activities. A goal of this project is to provide middle school science educators with resources to teach while fostering early development of math and science literacy. The work is funded by a National Science Foundation CAREER award. For a complete list of learning modules and to learn more about the curriculum, visit https://www.atmos.illinois.edu/~nriemer/education.html
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
Why does the Moon not always look the same to us? Sometimes …
Why does the Moon not always look the same to us? Sometimes it is a big, bright, circle, but, other times, it is only a tiny sliver, if we can see it at all. The different shapes and sizes of the slivers of the Moon are referred to as its phases, and they change periodically over the course of a lunar month, which is twenty-eight days long. The phases are caused by the relative positions of the Earth, Sun, and Moon at different times during the month.
Students work in teams of two to discover the relative positions of …
Students work in teams of two to discover the relative positions of the Earth, Sun and Moon that produce the different phases of the Moon. Groups are each given a Styrofoam ball that they attach to a pencil so that it looks like a lollipop. In this acting-out model exercise, this ball on a stick represents the Moon, the students represent the Earth and a hanging lightbulb serves as the Sun. Students move the "Moon" around them to discover the different phases. They fill in the position of the Moon and its corresponding phase in a worksheet.
Rating: Example of High Quality NGSS Design if Improved Science Discipline: Earth …
Rating: Example of High Quality NGSS Design if Improved
Science Discipline: Earth & Space Sciences, Physical Sciences
Length: Unit
In Investigating Life on the Third Rock, middle school students work to generate and explore the overarching question of “How does the solar system and its objects affect life on Earth?” Students use modeling and argumentation to explore the lesson-level questions: “What properties of the solar system and its objects help explain why Earth can sustain life?” “Does the Moon affect life on Earth?” and “Why do the solar system and its objects move like they do?”
Humans have been on a mission to learn more about the red …
Humans have been on a mission to learn more about the red planet. Use this content guide to learn more about the challenges facing robotic explorers of Mars.
Students learn about the Earth's only natural satellite, the Moon. They discuss …
Students learn about the Earth's only natural satellite, the Moon. They discuss the Moon's surface features and human exploration. They also learn about how engineers develop technologies to study and explore the Moon, which also helps us learn more about the Earth.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.