Resources to mark the 100th day of school with math activities. Challenge …
Resources to mark the 100th day of school with math activities. Challenge students to generate 100 different ways to represent the number 100. Students will easily generate 99 + 1 and 50 + 50, but encourage them to think out of the box. Challenge them to include examples from all of the NCTM Standards strands: number sense, numerical operations, geometry, measurement, algebra, patterns, data analysis, probability, discrete math, Create a class list to record the best entries. Some teachers write 100 in big bubble numeral style and then record the entries inside the numerals.
The Anchoring Phenomenon Routine is the launch to student investigation around the …
The Anchoring Phenomenon Routine is the launch to student investigation around the anchoring phenomenon. This phenomenon will be the one that students will describe and explain, using disciplinary core ideas, science and engineering practices and crosscutting concepts in investigations. The Anchoring Phenomenon Routine will encourage thoughtful consideration of the phenomenon, initial models, connections to related phenomenon, discussions about the phenomenon and the creation of the KLEWS chart used for documenting student learning. In an Anchoring Phenomenon Routine, students: ● Are presented with a phenomenon or design problem ● Write and discuss what they notice and wonder about from the initial presentation ● Create and compare initial models of the phenomenon or problem ● Identify related experiences and knowledge that they could draw upon to explain the phenomenon or solve the problem ● Construct a KLEWS Chart ● Identify potential investigations to answer the questions on the KLEWS Chart, adding the questions to the chart
This sequence of instruction was developed in the Growing Elementary Science Project to …
This sequence of instruction was developed in the Growing Elementary Science Project to help elementary teachers who were working remotely. We developed a short storyline that ties together a few sessions to help explore a specific concept. We tried to include some activities that honored and included the student’s family and experience, and some that included the potential for ELA learning goals. Students view a couple of videos and record what they notice and wonder about how plants change as seasons change. Students take a walk with family members to search for evidence of changes due to weather in their neighborhoods. It is part of ClimeTime - a collaboration among all nine Educational Service Districts (ESDs) in Washington and many Community Partners to provide programs for science teacher training around Next Generation Science Standards (NGSS) and climate science, thanks to grant money made available to the Office of the Superintendent of Public Instruction (OSPI) by Governor Inslee.
In the 2018-2019 school year, Northwest Educational Service District 189 brought together …
In the 2018-2019 school year, Northwest Educational Service District 189 brought together a design team of six Pre Kindergarten - Kindergarten educators through a ClimeTime grant to find play-based, and engaging ways to teach climate science to early learners. This course shares out the findings of the team, including some work around designing for equity and 3-Dimensional Next Generation Science Standards (NGSS) alignment. You will engage in activities to use with students including a puddle walk, soil permeability tests, and lesson examples. Phenomenon based lessons will be shared as well as a list of resources and recommended books compiled by our design team.
Collecting weather data across time supports data collection and analysis practices. Students …
Collecting weather data across time supports data collection and analysis practices. Students can use their own data to look for patterns across time. Engaging in this assessment activity, developed by ClimeTime educators, will help students: explain the components that constitute weather and explain that these components change in patterns; describe how various components of weather can be different at different times of the year; explain how changes in the various elements of weather create patterns and influence behavior. Resource includes a student task document, teacher guide, and task facilitation slides.
This resource is designed as a module with a storybook or web …
This resource is designed as a module with a storybook or web story, and four activities. In the storybook, the GLOBE Kids investigate colors in the sky and learn how air pollution affects sky color and our health. Learning activities engage students in describing sky color and conditions in the atmosphere, creating a model to learn how sky color and visibility are affected by aerosols, using prisms to explore properties of light and colors, and collecting aerosol samples.
Through learning activities, students learn how weather over a long period of …
Through learning activities, students learn how weather over a long period of time describes climate, explore how sea level rise can affect coastal communities and environments, and describe how humans are contributing to climate change and how we can take action to solve this problem.
In these activities and story book, students wonder why hummingbirds have stopped …
In these activities and story book, students wonder why hummingbirds have stopped visiting their school. They learn about the needs of the hummingbirds, the seasonal changes where they live, and the environment where the hummingbirds spend the winter. Students describe the seasonal changes in a local habitat, observe how colors in nature change through the seasons, and research hummingbirds.
A learning activity for the "All About Earth: Our World on Stage" …
A learning activity for the "All About Earth: Our World on Stage" book in the Elementary GLOBE series. One of the "big ideas" in Earth system science is the notion of interaction among parts of the Earth system. In the Elementary GLOBE book All About Earth: Our World on Stage, the children in Ms. Patel's class discuss instances of how the four major spheres of Earth's system interact. They symbolize these interactions by using large arrows to link the system components: air, water, soil, living things and the Sun. In this activity, students continue to explore the idea of interaction among Earth components as they identify processes in the Earth system and indicate how they illustrate an interaction between two of the Earth system components. The purpose of the activity is to help students deepen their understanding of interconnections among Earth's systems, help students to identify processes where Earth's systems are interacting, and to provide practice in the observation and recording of natural phenomena. After completing this activity, students will understand that Earth system interactions are all around them, going on all the time, and that Earth's processes are interconnected. They will learn how to make observations and identify the interactions they illustrate.
Fluids flow from hot to cold at an interface such as the …
Fluids flow from hot to cold at an interface such as the surface of the bubble. As the bubbles begin to freeze, the still-liquid part of the bubble keeps moving, ripping ice crystals off the growing freeze front and tossing them around. Those ice crystals each create their own freeze front, making the bubble’s surface solidify faster.
In this 5 minute video, the teacher is establishing a classroom culture …
In this 5 minute video, the teacher is establishing a classroom culture for doing science at the beginning of the year in Kindergarten. She engages students in collecting temperature data daily, while simultaneously supporting students in understanding how to measure temperature, the importance of doing it at the same time every day (fair test), and how temperature affects students' daily lives.
This video was produced for the NSTA webinar series, Teaching NGSS in K-5 (Zembal-Saul, Starr & Renfrew, 2014-15).
This sequence of instruction was developed in the Growing Elementary Science Prjoject to …
This sequence of instruction was developed in the Growing Elementary Science Prjoject to help elementary teachers who were working remotely. We developed a short storyline that ties together a few sessions to help explore a specific concept. We tried to include some activities that honored and included the student’s family and experience, and some that included the potential for ELA learning goals. The book “Storm is Coming!” introduces students to the idea of severe weather. Students observe a time-lapse video of a hail storm. Students interview a family member about a memorable weather event and what that person did to prepare and stay safe. Students explore the implications of all of their interviews. Students make plans for how they can prepare for future weather events, including an Engineering Design exercise. It is part of ClimeTime - a collaboration among all nine Educational Service Districts (ESDs) in Washington and many Community Partners to provide programs for science teacher training around Next Generation Science Standards (NGSS) and climate science, thanks to grant money made available to the Office of the Superintendent of Public Instruction (OSPI) by Governor Inslee.
The original Native American story component lesson was developed as part of an …
The original Native American story component lesson was developed as part of an Office of Superintendent of Public Instruction (OSPI) and Washington State Leadership and Assistance for Science Education Reform (LASER) project funded through an EPA Region 10 grant. The stories were told by Roger Fernandes of the Lower Elwha Klallam tribe. Mr. Fernandes has been given permission by the tribes to tell these stories.As these lessons and stories were shared prior to the adoption of the Washington State Science Learning Standards in 2013, there was a need to align these stories with the current science standards. This resource provides a current alignment and possible lesson suggestions on how these stories can be incorporated into the classroom. This alignment work has been funded by the NGSS & Climate Science Proviso of the Washington State Legislature as a part of North Central Educational Service District's award.
In this lesson, students will compare weather and climate, explain patterns over …
In this lesson, students will compare weather and climate, explain patterns over time and participate in a climate relay race.
NGSS: K-ESS2-1
Time: 45-50 minutes
Materials: globe, flashlight, three sets of clothing for the relay race (sunglasses, sunhat, swim suit, board shorts, rain jacket, hiking boots, umbrella, sweater, heavy jacket, warm hat, gloves, scarf, etc.)
PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER …
PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER consists of Teacher Editions and student Science Logbooks for every module.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
See OER license details here: https://s3.greatminds.org/link_files/files/000/003/991/original/Final_Form_OER_PhD_Science_K-2_limited_public_license_%282.10.21%29.pdf
Throughout the module, students study the anchor phenomenon, the cliff dwellings at …
Throughout the module, students study the anchor phenomenon, the cliff dwellings at Mesa Verde, and build an answer to the Essential Question: How did the cliff dwellings at Mesa Verde protect people from the weather? As students learn about each new concept, they develop and refine a model that represents a cliff dwelling and use that model to explore how cliff dwellings protected people from the weather. At the end of the module, students use their knowledge of weather to explain the anchor phenomenon, and they apply their learning to a new context in an End-of-Module Assessment. Through these experiences, students begin to establish an enduring understanding of weather and its effects. Specifically, students develop an understanding of the parts of weather, the effects weather has on people and their surroundings, and the ways people prepare for severe weather.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.
Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.
Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.
This is the first lesson introducing weather. Students will start with a KWL, …
This is the first lesson introducing weather. Students will start with a KWL, discusing what they know, want to know, and learned later. Then, they will be given a weather journal where they will record the temperature and type of weather everyday, as well as include information they learned each day.They will watch an SciShow Kids video on observing weather and then go outside to do their own observing. Students will then share with their classmates what they noticed.
Overview: Developed in partnership with the Jamerson Center for Engineering and Mathematics …
Overview: Developed in partnership with the Jamerson Center for Engineering and Mathematics and ESD112 STEM Initiatives, this unit explores NGSS Performance Expectations for Kindergarten Weather and Climate, including an engineering design performance task.
This unit introduces kindergarten students to the patterns and variations in local weather by engaging them in this unit which integrates K NGSS standards for physical science (K-PS3-1, K-PS3-2, K-ESS2-1) with CC ELA standards.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.