Updating search results...

Search Resources

8 Results

View
Selected filters:
  • NGSS.HS.PS2.3 - Apply scientific and engineering ideas to design, evaluate, and refine...
  • NGSS.HS.PS2.3 - Apply scientific and engineering ideas to design, evaluate, and refine...
Applying Hooke's Law to Cancer Detection
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore Hooke's law while working in small groups at their lab benches. They collect displacement data for springs with unknown spring constants, k, by adding various masses of known weight. After exploring Hooke's law and answering a series of application questions, students apply their new understanding to explore a tissue of known surface area. Students then use the necessary relationships to depict a cancerous tumor amidst normal tissue by creating a graph in Microsoft Excel.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luke Diamond
Date Added:
09/18/2014
Collisions of Macroscopic Objects
Rating
0.0 stars

Apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. The students are tasked with using their newly discovered physics skills to assess the quality of substances used in Crash Cushions that are used for safety on highways. This Open Inquiry Activity has the students design a ramp to test the speed of a moving object and the collision with four different materials. They are asked to figure out what material was best for the speed that they were going at. This Activity provides a variety of answers based on the angle of the ramp that they make. The fourth module wraps up this unit with a fun and interactive Activity that can either be done at home or at school.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Author:
Seth Diaz
Date Added:
01/11/2021
Conceptual Physics
Unrestricted Use
CC BY
Rating
0.0 stars

Conceptual Physics is a year-long course based on CK-12 OER instructional material and supplemented with limited commercially-available materials. The course is project-based, argument-driven inquiry. Each unit begins with presentation of an intriguing phenomenon, followed by an essential question about the phenomenon, and a project centered on answering that essential question. Throughout the unit, students conduct research and investigations to answer portions of the question. Each unit has a student "Task" at the end that serves as an assessment of the unit's concepts. At the end of each unit, students assemble all of the unit tasks and synthesize a personal final project that answers the essential question in a personal context chosen by the student.

Subject:
Astronomy
Physical Science
Physics
Material Type:
Full Course
Lesson
Lesson Plan
Unit of Study
Author:
Jonathan Frostad
Gary Thayer
Malia Turner
Zachary Sawhill
Mackenzie Neal
Michael Crebbin
Washington OSPI OER Project
Date Added:
10/19/2021
Don't Crack Humpty
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups are provided with a generic car base on which to design a device/enclosure to protect an egg on or in the car as it rolls down a ramp at increasing slopes. During this in-depth physics/science/technology activity, student teams design, build and test their creations to meet the design challenge, and are expected to perform basic mathematical calculations using collected data, including a summative cost to benefit ratio.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Riley
Ryan St. Gelais
Scott Beaurivage
Date Added:
09/18/2014
E.G. Benedict's Ambulance Patient Safety Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students further their understanding of the engineering design process (EDP) while applying researched information on transportation technology, materials science and bioengineering. Students are given a fictional client statement (engineering challenge) and directed to follow the steps of the EDP to design prototype patient safety systems for small-size model ambulances. While following the steps of the EDP, students identify suitable materials and demonstrate two methods of representing solutions to the design challenge (scale drawings and small-scale prototypes). A successful patient safety system meets all of the project's functions and constraints, including the model patient (a raw egg) "surviving" a front-end collision test with a 1:8 ramp pitch.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jared R. Quinn
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Date Added:
09/18/2014
Environmental Science Course Summary
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this course will focus on both biotic and abiotic systems. You will learn about ecosystems and their interactions, water (including surface water, ponds and lakes, groundwater, water quality), soils, and resources both renewable and non-renewable resources. You will also how the basic systems influence the ecosystems of the Earth. You will investigate threatened and endangered species in our world. Environmental health and the importance of agriculture are also discussed in terms of their impact on our ecosystems.

Subject:
Physical Science
Material Type:
Full Course
Date Added:
04/23/2018
NCESD Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

The Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry is a three dimensional course based on the Conceptual Progression Model of the Next Generation Science Standards. It is designed to be used as part of a three course program that addresses all high school science performance expectations. Course 1 is designed for ninth grade students.
This resource includes the teacher materials, supporting documents, and short videos to support teachers in using the materials.
The Courses were designed using the Ambitious Science Teaching (AST) framework. It is strongly encouraged that before using these materials that you be familiar with AST. We suggest that you watch the AST Overview short video found here: https://datapuzzles.org/ambitious-science-teaching and explore this Google Slide deck that contains many resources designed to further your understanding of AST: https://docs.google.com/presentation/d/1WOUVmlm636_7i2l0GYa9JkX1TCK3NMdySfpxKN7IM7A/edit?usp=sharing

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Author:
Carissa Haug
Lisa Monahan
Mechelle LaLanne
NCESD contributors
Date Added:
04/13/2021
Patterns Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Patterns Physics is the initial course in the 3-year high school Patterns Science sequence. Patterns Physics focuses on three-dimensional (3D) learning through culturally responsive, phenomena-based storylines that intertwine the disciplinary core ideas of physics and earth science with the scientific and engineering practices and crosscutting concepts as described in the Next Generation Science Standards (NGSS).

The Patterns High School Science Sequence (https://hsscience4all.org/) is a three year course pathway and curriculum aligned to the Next Generation Science Standards (NGSS).

Each course utilizes:
- Common instructional strategies
- Real world phenomena
- Design challenges to engage students and support their learning.

For more information, contact us at info@pdxstem.org.

The curriculum is a combination of teacher-generated and curated open-content materials. The Teacher-generated materials are shared freely under a Attribution-NonCommercial-Sharealike Creative Commons License.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
Portland Metro STEM Partnership
Author:
Jamie Rumage
Date Added:
08/10/2020