Students toss coins to determine what traits a set of mouse parents …
Students toss coins to determine what traits a set of mouse parents possess, such as fur color, body size, heat tolerance, and running speed. Then they use coin tossing to determine the traits a mouse pup born to these parents possesses. Then they compare these physical features to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?
BRIGHT Girls was a project to build broader participation in the sciences, …
BRIGHT Girls was a project to build broader participation in the sciences, led by the University of Alaska Fairbanks and funded by the National Science Foundation. We sought to increase students' motivation and capacity to pursue careers in STEM by engaging them in studies of nearby natural environments. The developed lesson plans may be used in formal or informal educational settings, e.g., in a summer academy or across multiple class periods. These investigations help students explore the relationships among life history and ecosystems, connecting biology to geology and remote sensing.
Explore how populations change over time in a NetLogo model of sheep …
Explore how populations change over time in a NetLogo model of sheep and grass. Experiment with the initial number of sheep, the sheep birthrate, the amount of energy sheep gain from the grass, and the rate at which the grass re-grows. Remove sheep that have a particular trait (better teeth) from the population, then watch what happens to the sheep teeth trait in the population as a whole. Consider conflicting selection pressures to make predictions about other instances of natural selection.
With your mouse, drag data points and their error bars, and watch …
With your mouse, drag data points and their error bars, and watch the best-fit polynomial curve update instantly. You choose the type of fit: linear, quadratic, cubic, or quartic. The reduced chi-square statistic shows you when the fit is good. Or you can try to find the best fit by manually adjusting fit parameters.
With your mouse, drag data points and their error bars, and watch …
With your mouse, drag data points and their error bars, and watch the best-fit polynomial curve update instantly. You choose the type of fit: linear, quadratic, cubic, or quartic. The reduced chi-square statistic shows you when the fit is good. Or you can try to find the best fit by manually adjusting fit parameters.
After watching video clips from the Harry Potter and the Goblet of …
After watching video clips from the Harry Potter and the Goblet of Fire movie, students explore the use of Punnett squares to predict genetic trait inheritance. The objective of this lesson is to articulate concepts related to genetics through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.
Sign up for a free account on the Gizmo website (https://www.explorelearning.com/index.cfm?method=Controller.dspFreeAccount) for …
Sign up for a free account on the Gizmo website (https://www.explorelearning.com/index.cfm?method=Controller.dspFreeAccount) for free access to two simulations that were collaboratively developed by the teams at Explore Learning and the Wisconsin Fast Plants Program of the University of Wisconsin-Madison. These simulations replace those previously available on our website that were developed nearly two decades ago and no longer function on modern operating systems. Fast Plants Gizmos were created as a collaboration between ExploreLearning and the Wisconsin Fast Plants Program of the University of Wisconsin-Madison. They weredesigned to support many of the experiments that students can do using Fast Plants seeds and plants. By using these Gizmos in combination with firsthand experiences growing Fast Plants, students can compare simulated growth, development and reproduction with observations of living Fast Plants. In addition, the Gizmos genetic simulation makes it possible for students to gather data from a significantly larger plant population than is typically grown in classrooms. These Gizmos also stand alone, supporting topics both in plant life cycles and Mendelian genetics and can be used by any student. Simulation, Simulations, Genetics, Inheritance
This lesson introduces the Bone Module Grand Challenge question. Students are asked …
This lesson introduces the Bone Module Grand Challenge question. Students are asked to write their initial responses to the question alone. They will then brainstorm ideas with one other student. Finally, the ideas are shared with the class and recorded. It is important for students to gather information to decide whether or not this condition is hereditary. Students then watch two videos about osteoporosis. Grand Challenge Question: When you get home from school, your mother grabs you, and you rush to the hospital. Your grandmother fell and was rushed to the emergency room. The doctor tells your family your grandmother has a fractured hip, and he is referring her to an orthopedic specialist. The orthopedic doctor decides to perform a DEXA scan. The result showed her bone mineral density (BMD) was -3.3. What would be a probable diagnosis to her condition? What are some possible causes of her condition? Should her family be worried that this condition is hereditary, and if so, what are possible prevented measures they could take to prevent this from happening to them? What statistical method did you use to determine if the condition is hereditary?
How can we Design Cattle to Better Meet Human Needs? In this …
How can we Design Cattle to Better Meet Human Needs?
In this high school Storyline unit on genetics and heredity, students are introduced to ‘SuperCows’. As they explore the vast variety of cattle breeds, students discover that cattle are specialized for different purposes and while similar, the ‘SuperCows’ are clearly unique. Students wonder what caused this diversity and specificity which leads to investigations about the role of inheritance, DNA and proteins.
Students explore the relationships between genetics, biodiversity, and evolution through a simple …
Students explore the relationships between genetics, biodiversity, and evolution through a simple activity involving hypothetical wild mouse populations. First, students toss coins to determine what traits a set of mouse parents possesses, such as fur color, body size, heat tolerance, and running speed. Next they use coin tossing to determine the traits a mouse pup born to these parents possesses. These physical features are then compared to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?
Este E-Book destina-se a todos os sujeitos que desejam conhecer outras formas …
Este E-Book destina-se a todos os sujeitos que desejam conhecer outras formas de se trabalhar a temática água nos ambientes formais de ensino, principalmente na educação básica a partir do ensino das Ciências Ambientais. O que trazemos é uma proposta de metodologia em pedagogia de projeto de forma interdisciplinar, baseada nos conhecimentos dos povos originários, para uma ressignificação socioambiental dos seus participantes. Tal proposta toma como base a relação entre o povo Xokó e o Rio São Francisco.
Patterns Biology is the culminating course in the 3-year high school Patterns …
Patterns Biology is the culminating course in the 3-year high school Patterns Science sequence. Patterns Biology focuses on three-dimensional (3D) learning through culturally responsive, phenomena-based storylines that intertwine the disciplinary core ideas of biology with the scientific and engineering practices and crosscutting concepts as described in the Next Generation Science Standards (NGSS).
The Patterns High School Science Sequence (https://hsscience4all.org/) is a three year course pathway and curriculum aligned to the Next Generation Science Standards (NGSS).
Each course utilizes: - Common instructional strategies - Real world phenomena - Design challenges to engage students and support their learning.
For more information, contact us at info@pdxstem.org.
The curriculum is a combination of teacher-generated and curated open-content materials. The Teacher-generated materials are shared freely under a Attribution-NonCommercial-Sharealike Creative Commons License.
The students will play a classic game from a popular show. Through …
The students will play a classic game from a popular show. Through this they will see the probabilty that the ball will land each of the numbers with more accurate results coming from repeated testing.
A first person story is presented to the students to hook their …
A first person story is presented to the students to hook their interest in the disease. Using a jigsaw approach, students will learn about the fundamentals of Pompe disease and share information during a whole class discussion.
The Pompe Predicament was developed as a part of Biomedical Explorations: Bench to Bedside which was supported by the National Center for Research Resources and the Division of Program Coordination, Planning, and Strategic Initiatives of the National Institutes of Health through Grant Number R25RR023294. Additional support provided by the University of Florida (UF) and the UF Center for Precollegiate Education and Training.
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.
Students are introduced to several types of common medical sensor devices, such …
Students are introduced to several types of common medical sensor devices, such as ear and forehead thermometers, glucometers and wrist blood pressure monitors; they use the latter to measure their blood pressure and pulse rates. Students also measure their heights and weights in order to calculate their BMIs (body mass index). Then they use the collected data to create and analyze scatterplots of the different variables to determine if any relationships exist between the measured variables. Discussions about the trends observed and possible health concerns conclude the activity.
Students are introduced to the concepts of the challenge question. First independently, …
Students are introduced to the concepts of the challenge question. First independently, and then in small groups, they generate ideas for solving the grand challenge introduced in the associated lesson: Your grandmother has a fractured hip and a BMD of -3.3. What medical diagnosis explains her condition? What are some possible causes? What are preventative measures for other family members? Students complete a worksheet that contains the pertinent questions, as well as develop additional questions of their own, all with the focus on determining what additional background knowledge they need to research. Finally, as a class, students compile their ideas, resulting in a visual as a learning supplement.
Students use DNA profiling to determine who robbed a bank. After they …
Students use DNA profiling to determine who robbed a bank. After they learn how the FBI's Combined DNA Index System (CODIS) is used to match crime scene DNA with tissue sample DNA, students use CODIS principles and sample DNA fragments to determine which of three suspects matches evidence obtain at a crime location. They communicate their results as if they were biomedical engineers reporting to a police crime scene investigation.
Download the complete instructions for a high school level inheritance inquiry, using …
Download the complete instructions for a high school level inheritance inquiry, using Wisconsin Fast Plants. In this investigation, students gather their own evidence to explain how inheritance works. As they observe three generations of Wisconsin Fast Plants, students unravel a paternity mystery: What was the father’s phenotype? Was it the same as the mother’s phenotype or the offspring’s phenotype? Or is it something entirely different? As first, then second generations of plants grow, students make observations that serve as evidence to support or refute their explanations about the inheritance of two easily observable traits that demonstrate Mendelian patterns of simple dominant / recessive genotypes. Complete kits are available from Carolina Biological for this investigation, or everything to grow Fast Plants can be built or obtained locally, using the instructions available on the Fast Plants website.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.