Through detailed explanations, visual aids, and practical examples, this material covers the …
Through detailed explanations, visual aids, and practical examples, this material covers the fundamental concepts of azeotropic and extractive distillation, including the flowsheet of azeotropic distillation columns, the role of entrainers, and the challenges posed by azeotropes in traditional distillation processes.
Few people are aware of how crucial the sense of smell is …
Few people are aware of how crucial the sense of smell is to identifying foods, or the adaptive value of being able to identify a food as being familiar and therefore safe to eat. In this lesson and activity, students conduct an experiment to determine whether or not the sense of smell is important to being able to recognize foods by taste. The teacher leads a discussion that allows students to explore why it might be adaptive for humans and other animals to be able to identify nutritious versus noxious foods. This is followed by a demonstration in which a volunteer tastes and identifies a familiar food, and then attempts to taste and identify a different familiar food while holding his or her nose and closing his or her eyes. Then, the class develops a hypothesis and a means to obtain quantitative results for an experiment to determine whether students can identify foods when the sense of smell has been eliminated.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Above ground, plants can seem fairly simple, but below, there is a rich world full of hidden activity. To promote their growth, plants secrete chemicals from their roots that can affect the soil and air around them. This helps them adapt to environmental conditions, stressors, and pathogens. But how these chemicals affect the plants’ microbiota is poorly understood. A recent study evaluated chemical interactions between peanut plants and cassava, which are often co-cultivated. The researchers found that cassava plants produced cyanide, which induced stress in peanut plants. This caused the peanut plants to emit ethylene, a volatile hormone that diffuses through gas and water in the soil. Ehtylene, in turn, attracted specific microbial species that helped to remineralize the soil, ensuring that the peanut plants could increase their yield alongside cassava..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.