Updating search results...

Search Resources

27 Results

View
Selected filters:
  • transport
Bio-Engineering: Making and Testing Model Proteins
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as if they are biological engineers following the steps of the engineering design process to design and create protein models to replace the defective proteins in a child’s body. Jumping off from a basic understanding of DNA and its transcription and translation processes, students learn about the many different proteins types and what happens if protein mutations occur. Then they focus on structural, transport and defense proteins during three challenges posed by the R&D; bio-engineering hypothetical scenario. Using common classroom supplies such as paper, tape and craft sticks, student pairs design, sketch, build, test and improve their own protein models to meet specific functional requirements: to strengthen bones (collagen), to capture oxygen molecules (hemoglobin) and to capture bacteria (antibody). By designing and testing physical models to accomplish certain functional requirements, students come to understand the relationship between protein structure and function. They graph and analyze the class data, then share and compare results across all teams to determine which models were the most successful. Includes a quiz, three worksheets and a reference sheet.

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Beth Podoll
Lauren Sako
Date Added:
06/07/2018
Cellular Soap Opera
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Every cell in your body needs to take in nutrients, oxygen, and raw materials and export wastes and other substances—but it’s not just a random traffic jam! A cell membrane (also called a plasma membrane) regulates what comes in and what goes out. Explore the properties of soap films and relate them to the properties of plasma membranes and the mechanics of transport across membranes.

Subject:
Life Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
04/05/2019
Dangerous Air
Read the Fine Print
Educational Use
Rating
0.0 stars

By tracing the movement of radiation released during an accident at the Chernobyl nuclear power plant, students see how air pollution, like particulate matter, can become a global issue.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Tyman Stephens
Date Added:
10/14/2015
Electric Cars: Technology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electric cars are more than a novel means of mobility. They have been recognized as an essential building block of the energy transition. Fulfilling their promise will imply a significant change in the technical, digital and social dimensions of transport and energy infrastructure. If you are interested in learning about the state-of-the-art technology behind electric cars, then this is the course for you!

This course focuses on the technology behind electric cars. You will explore the working principle of electric vehicles, delve into the key roles played by motors and power electronics, learn about battery technology, EV charging, smart charging and about future trends in the development of electric cars.

The course includes video lectures, presentations and exercises, which are all illustrated with real-world case studies from projects that were implemented in the Netherlands.

This course was co-developed by Dutch Innovation Centre for Electric Road Transport (Dutch-INCERT) and TU Delft and is taught by experts from both the industry and academia, who share their knowledge and insights.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
dr. Pavol Bauer
ir. A.E. Hoekstra
ir. G.R. Chandra Mouli
prof.dr.ir. M. Wagemaker
Date Added:
02/19/2019
Energy Technology
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This course looks at all forms that energy exists. It explains how energy is used in: transport, agriculture, industry, commerce and households. It describes how energy is stored using storage systems such as: battery, flywheels, compressed air, chemical energy systems and pumped storage. This course explains the problem of depletion of energy resources. It describes the environmental damage associated with the use of fossil fuels, acid rains, dangers posed by leaded fuels, oil spills, gas leaks and explosions, water pollution caused by poorly managed coal mines, and air pollution. It describes the environmental damage associated with the use of fuelwood, uranium, hydro-power plants and wind. It also explains possible solutions to the energy-related problems.

Material Type:
Full Course
Homework/Assignment
Reading
Provider:
WikiEducator
Date Added:
02/16/2011
German Level 3, Activity 02: Reisen / Travel (Face to Face)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will be randomly assigned groups with the following cities: Berlin, Wien, und Zurich. They will be given a budget and need to create an itinerary for a week-long stay.

Subject:
Languages
Material Type:
Activity/Lab
Author:
Shawn Moak
Mimi Fahnstrom
Amber Hoye
Date Added:
04/21/2022
Last Mile Delivery training - trainingforlastmile.eu
Unrestricted Use
CC BY
Rating
0.0 stars

This set of open educational resources were developed as a result of the “Training for Last Mile Deliverers/Drivers in Safe and Sustainable Urban Areas” (TRALMEDES) Erasmus+ KA2 Strategic Partnerships VET project (https://trainingforlastmile.eu/), running from September 2020 to August 2022.
The project arises from this need of the logistics sector to promote road safety awareness and adapted training to the growth experienced by the Last Mile Delivery in these recent years.
Go-to URI https://trainingforlastmile.eu/e-learning-platform/ if the resource does not open with "View Resource" button.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Material Type:
Full Course
Interactive
Author:
"trainingforlastmile.eu Partnership"
Date Added:
09/23/2022
Let's Move It!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore methods employing simple machines likely used in ancient pyramid building, as well as common modern-day material transportation. They learn about the wheel and axle as a means to transport materials from rock quarry to construction site. They also learn about different types and uses of a lever for purposes of transport. In an open-ended design activity, students choose from everyday materials to engineer a small-scale cart and lever system to convey pyramid-building materials.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Glen Sirakavit
Jacquelyn F. Sullivan
Lawrence E. Carlson
Luz Quiñónez
Malinda Schaefer Zarske
Date Added:
09/18/2014
Locks and Dams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the structure, function and purpose of locks and dams, which involves an introduction to Pascal's law, water pressure and gravity.

Subject:
Applied Science
Career and Technical Education
Engineering
Hydrology
Logistics and Transportation
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Jeff Lyng
Kristin Field
Lauren Cooper
Date Added:
09/18/2014
Mechanisms of Drug Actions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Dedon, Peter
Knutson, Charles
Murcko, Mark
Tannenbaum, Steven
Date Added:
09/01/2013
Membrane Transport in Animal Cells
Unrestricted Use
CC BY
Rating
0.0 stars

The real structure of cell membrane is so dynamic & it not only allows the cells to move but also has constant movement & fluidity. Therefore, an animation would be great for teaching the dynamic movement of phospholipids & proteins in cell membrane. This LO also helps students to understand the movement of material across the membrane. I prefer students watch it at least twice.

Subject:
Biology
Material Type:
Lesson Plan
Author:
maxwell sanei
Date Added:
03/03/2018
Moving without Wheels
Read the Fine Print
Educational Use
Rating
0.0 stars

In a class demonstration, students observe a simple water cycle model to better understand its role in pollutant transport. This activity shows one way in which pollution is affected by the water cycle; it simulates a point source of pollution in a lake and the resulting environmental consequences.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alejandro Reiman-Moreno
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Tyman Stephens
Date Added:
10/14/2015
Next Generation Infrastructures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Infrastructures for energy, water, transport, information and communications services create the conditions for livability and economic development. They are the backbone of our society. Similar to our arteries and neural systems that sustain our human bodies, most people however take infrastructures for granted. That is, until they break down or service levels go down.

In many countries around the globe infrastructures are ageing. They require substantial investments to meet the challenges of increasing population, urbanization, resource scarcity, congestion, pollution, and so on. Infrastructures are vulnerable to extreme weather events, and therewith to climate change.
Technological innovations, such as new technologies to harvest renewable energy, are one part of the solution. The other part comes from infrastructure restructuring. Market design and regulation, for example, have a high impact on the functioning and performance of infrastructures.

Subject:
Applied Science
Engineering
Material Type:
Case Study
Diagram/Illustration
Lecture
Reading
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Delft University of Technology
Date Added:
10/23/2014
On the Move
Read the Fine Print
Educational Use
Rating
0.0 stars

Looking at models and maps, students explore different pathways and consequences of pollutant transport via the weather and water cycles. In an associated literacy activity, students develop skills of observation, recording and reporting as they follow the weather forecast and produce their own weather report for the class.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Piezotronics and piezo-phototronics with third-generation semiconductors
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"New technologies for enhancing electronics and photonics are crucial for emerging applications in energy, sensing, artificial intelligence, and countless other areas. But these technologies are hard to come by using traditional semiconductors. Over the past decade, so-called third-generation semiconductors have proved to be a boon to materials science and engineering, giving researchers increased versatility in boosting device performance. Among the most promising properties of these materials is piezoelectricity—the ability to convert mechanical energy to electrical energy and vice versa. The December 2018 issue of the MRS Bulletin takes a look at how researchers are exploiting piezoelectricity in semiconductors to enhance electronic and photonic devices like never before, providing a glimpse into the world of piezotronics and piezo-phototronics. In 2006, Zhong Lin Wang’s group at Georgia Tech discovered that piezoelectricity in zinc oxide nanowires exerts a gating effect like that in transistors..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Engineering
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/20/2019
Polymer Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Thomas, Edwin
Date Added:
02/01/2007
Selectively Permeable Membranes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that engineers develop different polymers to serve various functions and are introduced to selectively permeable membranes. In a warm-up activity, they construct models of selectively permeable membranes using common household materials, and are reminded about simple diffusion and passive transport. In the main activity, student pairs test and compare the selective permeability of everyday polymer materials engineered for food storage (including plastic grocery bags, zipper sandwich bags, and plastic wrap) with various in-solution molecules (iodine, corn starch, food coloring, marker dye), assess how the polymer’s permeability relates to its function/purpose, and compare that to the permeability of dialysis tubing (which simulates a cell membrane).

Subject:
Biology
Career and Technical Education
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Eric Shows
Date Added:
02/03/2017
Solar Sails: The Future of Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Matthew Bentley
Date Added:
02/07/2017