This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Artificial intelligence is transforming our way of life. Able to spot patterns invisible to the human eye, algorithms are learning how to make our lives easier, safer, and more fun. That power is not lost on materials researchers. During the next decade, artificial intelligence or AI-driven research could fundamentally transform how new and better materials are developed. What’s more, it might even revamp how materials research itself is carried out, enabling promising new materials and processes to be developed more quickly. Machine learning methods come in a variety of flavors, with some requiring more guidance, or “supervision,” from researchers. But, generally, a machine-learning algorithm designed to discover and understand the behavior of materials looks for patterns connecting the composition, structure, and properties of known materials..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
The activities here work on analysis and synthesis skills. They take canonized …
The activities here work on analysis and synthesis skills. They take canonized text that are often taught at different times in the school year due to their placement in U.S. and world history and ask students to pair them together. A variety of activities and assessments are described or suggested throughout this resource to help students explore the boundaries surrounding certainty and doubt and lived experience.
This resource introduces, suggests, and proposes multiple approaches for making Joan Didion's …
This resource introduces, suggests, and proposes multiple approaches for making Joan Didion's essay more accessible while trying not to oversimplify it.
This class explores sound and what can be done with it. Sources …
This class explores sound and what can be done with it. Sources are recorded from students’ surroundings - sampled and electronically generated (both analog and digital). Assignments include composing with the sampled sounds, feedback, and noise, using digital signal processing (DSP), convolution, algorithms, and simple mixing. The class focuses on sonic and compositional aspects rather than technology, math, or acoustics, though these are examined in varying detail. Students complete weekly composition and listening assignments; material for the latter is drawn from sound art, experimental electronica, conventional and non-conventional classical electronic works, popular music, and previous students’ compositions.
Welcome to 2.007! This course is a first subject in engineering design. …
Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E. From its beginnings in 1970, the 2.007 final project competition has grown into an Olympics of engineering. See this MIT News story for more background, a photo gallery, and videos about this course.
Welcome to 2.007! This course is a first subject in engineering design. …
Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E. From its beginnings in 1970, the 2.007 final project competition has grown into an Olympics of engineering. See this MIT News story for more background, a photo gallery, and videos about this course.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Researchers at the RIKEN Center for Sustainable Resource Science have developed a new genetic pathway that can be used to co-opt E. coli bacteria to produce maleate, one of the most important industrial chemicals in use today. A chief component in the coatings of substances like nylon and galvanized steel and an important stabilizing agent in pharmaceuticals, maleate is typically produced through harsh treatments of crude oil. But by using genetically engineered microorganisms to produce maleate, the researchers have developed a much more sustainable approach. Maleate is the end product of a complex chemical reaction. Bacteria don’t normally come equipped with machinery to power this reaction, so the researchers had to design a ground-up approach before they could start harvesting maleate. This required careful analysis of the intermediates needed for maleate synthesis and the identification of genes that could help E. coli make each of these molecules..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Students explore the chemical identities of polymeric materials frequently used in their …
Students explore the chemical identities of polymeric materials frequently used in their everyday lives. They learn how chemical composition affects the physical properties of the materials that they encounter and use frequently, as well as how cross-linking affects the properties of polymeric materials.
This class covers the history of 20th century art and design from …
This class covers the history of 20th century art and design from the perspective of the technologist. Methods for visual analysis, oral critique, and digital expression are introduced. Class projects this term use the OLPC XO (One Laptop Per Child) laptop, Csound and Python software.
This course, which spans a third of a semester, provides students with …
This course, which spans a third of a semester, provides students with experience using techniques employed in synthetic organic chemistry. It also introduces them to the exciting research area of catalytic chiral catalysis. This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format.
Students explore the theme of conflict in literature. They learn the difference …
Students explore the theme of conflict in literature. They learn the difference between internal and external conflict and various types of conflicts, including self against self, self against other, and self against nature or machine. Stories are used to discuss methods of managing and resolving conflict and interpersonal friction. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world â concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.
Students make two different formulations of imitation Silly Putty with varying degrees …
Students make two different formulations of imitation Silly Putty with varying degrees of cross-linking. They witness how changes in the degree of cross-linking influence the putty properties.
This course is an investigation into the history and aesthetics of music …
This course is an investigation into the history and aesthetics of music and technology as deployed in experimental and popular musics from the 19th century to the present. Through original research, creative hands-on projects, readings, and lectures, the following topics will be explored. The history of radio, audio recording, and the recording studio, as well as the development of musique concrète and early electronic instruments. The creation and extension of musical interfaces by composers such as Harry Partch, John Cage, Conlon Nancarrow, and others. The exploration of electromagnetic technologies in pickups, and the development of dub, hip-hop, and turntablism. The history and application of the analog synthesizer, from the Moog modular to the Roland TR-808. The history of computer music, including music synthesis and representation languages. Contemporary practices in circuit bending, live electronics, and electro-acoustic music, as well as issues in copyright and intellectual property, will also be examined. No prerequisites.
In this course, we will rebuild the everyday sounds of nature, machines, …
In this course, we will rebuild the everyday sounds of nature, machines, and animals from scratch and encapsulate them in dynamic sound objects which can be embedded into computer games, animations, movies, virtual environments, sound installations, and theatre productions. You will learn how to analyze and model sounds and resynthesize them with the open-source graphical programming environment Pure Data (Pd). Our work will be guided by Andy Farnell’s book Designing Sound (MIT Press, 2010). No previous programming experience is required.
Students in grade two explore the lives of actual people who make …
Students in grade two explore the lives of actual people who make a difference in their everyday lives. They differentiate between events that happened long ago and events that happened yesterday by studying their family histories. A number of projects are completed that preserve the past, capture the present, or impact the future, including analyzing information and drawing conclusions about how and why the world has changed. The unit concludes with students creating family history time capsules that preserve the past and present for the future.
This unit plan was originally developed by the Intel® Teach program as an exemplary unit plan demonstrating some of the best attributes of teaching with technology.
Organic Chemistry research involves the synthesis of organic molecules and the study …
Organic Chemistry research involves the synthesis of organic molecules and the study of their reaction paths, interactions, and applications. Advanced interests include diverse topics such as the development of new synthetic methods for the assembly of complex organic molecules and polymeric materials, organometallic catalysis, organocatalysis, the synthesis of natural and non-natural products with unique biological and physical properties, structure and mechanistic analysis, natural product biosynthesis, theoretical chemistry and molecular modeling, diversity-oriented synthesis, and carbohydrate synthesis.
This intermediate organic chemistry course focuses on the methods used to identify …
This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry.
This intermediate organic chemistry course focuses on the methods used to identify …
This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry.
This seminar-format course provides an in-depth presentation and discussion of how engineering …
This seminar-format course provides an in-depth presentation and discussion of how engineering and biological approaches can be combined to solve problems in science and technology, emphasizing integration of biological information and methodologies with engineering analysis, synthesis, and design. Emphasis is placed on molecular mechanisms underlying cellular processes, including signal transduction, gene expression networks, and functional responses.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.