This course is a survey of principal concepts and methods of fluid …
This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.
This activity is a scientific investigation focusing on inquiry after using the …
This activity is a scientific investigation focusing on inquiry after using the Foss Water Kit. The students will pose a question, create a procedure and produce a poster showing their findings.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the properties of water that are critical to maintaining lifeExplain why water is an excellent solventProvide examples of water’s cohesive and adhesive propertiesDiscuss the role of acids, bases, and buffers in homeostasis
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the properties of water that are critical to maintaining lifeExplain why water is an excellent solventProvide examples of water’s cohesive and adhesive propertiesDiscuss the role of acids, bases, and buffers in homeostasis
Students learn about and experiment with the concept of surface tension. How …
Students learn about and experiment with the concept of surface tension. How can a paper clip "float" on top of water? How can a paper boat be powered by soap in water? How do water striders "walk" on top of water? Why do engineers care about surface tension? Students answer these questions as they investigate surface tension and surfactants.
Students are presented with a short lesson on the difference between cohesive …
Students are presented with a short lesson on the difference between cohesive forces (the forces that hold water molecules together and create surface tension) and adhesive forces (the forces that causes water to "stick" to solid surfaces. The interaction between cohesive forces and adhesive forces causes the well-known capillary action. Students are also introduced to examples of capillary action found in nature and in our day-to-day lives.
This video resource is presented as a real-world application of chemistry in …
This video resource is presented as a real-world application of chemistry in the field of conservation archaeology. Conservator, Francis Lukezic, walks through the conservation practices for waterlogged archaeological wood and explains the chemical and cellular processes at work. Use to support Maryland/NGSS for Grades 5, MS, and HS. For 5-PS1-1 and MS-PS1-1, have students watch or perform the paper clip demonstration and discuss how the hydrogen bonding of water allows this then is disrupted by the soap; have students develop diagrams explaining the phenomenon of surface tension on the molecular level. For HS-PS2-6, have students watch or perform the sponge demonstration and discuss how the molecular structure of the wood makes it vulnerable to becoming waterlogged then brainstorm materials that are more resilient to water and discuss the uses of the materials. For interdisciplinary connections to geography and history, have students research why Maryland archaeologists do or do not discover the materials brainstormed instead of wood. If you evaluate or use this resource, please respond to this short (4 question) survey bit.ly/3DhRumA
Students see how surface tension can enable light objects (paper clips, peppercorns) …
Students see how surface tension can enable light objects (paper clips, peppercorns) to float on an island of oil in water, and subsequently sink when the surface tension of the oil/water interface is reduced by the addition of a surfactant; such as ordinary dish soap.
Students observe multiple examples of capillary action. First they observe the shape …
Students observe multiple examples of capillary action. First they observe the shape of a glass-water meniscus and explain its shape in terms of the adhesive attraction of the water to the glass. Then they study capillary tubes and observe water climbing due to capillary action in the glass tubes. Finally, students experience a real-world application of capillary action by designing and using "capillary siphons" to filter water.
Students test and observe the "self-cleaning" lotus effect using a lotus leaf …
Students test and observe the "self-cleaning" lotus effect using a lotus leaf and cloth treated with a synthetic lotus-like superhydrophobic coating. They also observe the Wenzel and Cassie Baxter wetting states by creating and manipulating condensation droplets on the leaf surface. They consider the real-life engineering applications for these amazing water-repellent and self-cleaning properties.
This activity is a guided inquiry on surface tension where students design …
This activity is a guided inquiry on surface tension where students design their own lab experiment based on a focus question, make predictions, collect data and compare the outcome with their predictions.
Through three teacher-led demonstrations, students are shown samplers of real-world nanotechnology applications …
Through three teacher-led demonstrations, students are shown samplers of real-world nanotechnology applications involving ferrofluids, quantum dots and gold nanoparticles. This nanomaterials engineering lesson introduces practical applications for nanotechnology and some scientific principles related to such applications. It provides students with a first-hand understanding of how nanotechnology and nanomaterials really work. Through the interactive demos, their interest is piqued about the odd and intriguing nano-materials behaviors they witness, which engages them to next conduct the three fun associated nanoscale technologies activities. The demos use materials readily available if supplies are handy for the three associated activities.
This activity is an easy way to demonstrate the fundamental properties of …
This activity is an easy way to demonstrate the fundamental properties of polar and non-polar molecules (such as water and oil), how they interact, and the affect surfactants (such as soap) have on their interactions. Students see the behavior of oil and water when placed together, and the importance soap (a surfactant) plays in the mixing of oil and water which is why soap is used every day to clean greasy objects, such as hands and dishes. This activity is recommended for all levels of student, grades 3-12, as it can easily be scaled to meet any desired level of difficulty.
In this lesson and its associated activity, students conduct a simple test …
In this lesson and its associated activity, students conduct a simple test to determine how many drops of each of three liquids can be placed on a penny before spilling over. The three liquids are water, rubbing alcohol, and vegetable oil; because of their different surface tensions, more water can be piled on top of a penny than either of the other two liquids. However, this is not the main point of the activity. Instead, students are asked to come up with an explanation for their observations about the different amounts of liquids a penny can hold. In other words, they are asked to make hypotheses that explain their observations, and because middle school students are not likely to have prior knowledge of the property of surface tension, their hypotheses are not likely to include this idea. Then they are asked to come up with ways to test their hypotheses, although they do not need to actually test their hypotheses. The important points for students to realize are that 1) the tests they devise must fit their hypotheses, and 2) the hypotheses they come up with must be testable in order to be useful.
Students observe how water acts differently when placed on hydrophilic and hydrophobic …
Students observe how water acts differently when placed on hydrophilic and hydrophobic surfaces. They determine which coatings are best to cause surfaces to shed water quickly or reduce the "fogging" caused by condensation.
In a very hands-on activity, students observe and feel the differences between …
In a very hands-on activity, students observe and feel the differences between two cleaning methods, with and without hand soap, using coffee grounds to represent "dirt."Most of the dirt and bacteria on our hands is encased in a thin layer of oil, so because of the properties of oil and water, cleaning your hands with water alone has little effect when trying to remove the dirt. This activity demonstrates the importance of using a surfactant, such as hand soap, when washing your hands.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.