This is a PBL project that had students design and present to …
This is a PBL project that had students design and present to a panel of local experts a set of possible rides for a proposed amusement park as a way for them to master and apply the concepts of rotational motion. It was specifically designed to help students increase their depth of knowledge of angular kinematics, force, energy, and momentum. The project required students to design and then describe in detail one or more amusement park rides that would be the basis of authentically demonstrating their depth of knowledge for these topics. Note that the project was designed and delivered per the North Carolina honors Physics curriculum and it can be customized to meet your own specific curriculum needs and resources.
In this activity, a spinning bicycle wheel resists efforts to tilt it …
In this activity, a spinning bicycle wheel resists efforts to tilt it and point the axle in a new direction. Learners use the bicycle wheel like a giant gyroscope to explore angular momentum and torque. Learners can participate in the assembly of the Bicycle Wheel Gyro or use a preassembled unit to explore these concepts and go for an unexpected spin!
Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round …
Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.
8.01L is an introductory mechanics course, which covers all the topics covered …
8.01L is an introductory mechanics course, which covers all the topics covered in 8.01T. The class meets throughout the fall, and continues throughout the Independent Activities Period (IAP).
This module is thought of to be used by teachers and students. …
This module is thought of to be used by teachers and students. It's main area of concern is rotational motion and mass moment of inertia, two concepts which in my experience as a teacher, often makes students nervous due to the seemingly very abstract quantities involved in rotational motion. The goal of the following module is to bridge the gap between the students preliminary working knowledge in classical mechanics, while providing a hands-on approach to teaching the subject of the kinetics of rotating, solid objects. Learning ObjectivesIntroduce students to the fundamentals of the physics of rotating objects, with a suitable mix of theoretical and practical problem solving activites involving torque and mass moment of inertia.Allow students to relate their newfound understanding to real world situations where the theory allows students to analyse rotational motion in everyday situations as well as engineering applications and beyond.Enable the students to work through the concepts required before potentially proceeding with more advanced topics such as rotational energy and angular momentum.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.