Updating search results...

Search Resources

13 Results

View
Selected filters:
  • polymerase-chain-reaction
Activities for engaging students in Biology using animations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This resource includes three classroom-tested activities that were created using the ideas outlined in the article “Getting more out of animations” by Pruneski and Donovan (in press). The driving idea is that animations can be a powerful tool for learning complex biological processes, but when students are passive viewers, it limits their usefulness and may become simply another source of content to be memorized. Engaging students with animations can greatly increase the amount of information that can be extracted and can help students develop important learning skills that can be useful in the future.

These sample assignments help make the use of animations more effective and active by structuring student viewing using guiding questions. These questions focus on particular objects, features, or steps of the process to help students accomplish specific learning objectives for that topic. The assignments also help students think about animations as media objects that are created by scientists and animators using specific tools and conventions that affect how the process is depicted and the ways in which it should be viewed. Lastly, by comparing and contrasting multiple animations of the same process, students can extract more information, overcome the limitations of each individual animations, and generate a more complete view of the process.

Subject:
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Date Added:
06/18/2016
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Experimental Molecular Neurobiology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Designed for students without previous experience in techniques of cellular and molecular biology, this class teaches basic experimental techniques in cellular and molecular neurobiology. Experimental approaches covered include tissue culture of neuronal cell lines, dissection and culture of brain cells, DNA manipulation, synaptic protein analysis, immunocytochemistry, and fluorescent microscopy.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Hayashi, Yasunori
Lois, Carlos
Date Added:
09/01/2006
Introduction to Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.
Acknowledgments
The study materials, problem sets, and quiz materials used during Fall 2004 for 7.012 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course #7.012. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chess, Andrew
Gardel, Claudette
Lander, Eric
Weinberg, Robert
Date Added:
09/01/2004
Introductory Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. The focus of 7.013 is on genomic approaches to human biology, including neuroscience, development, immunology, tissue repair and stem cells, tissue engineering, and infectious and inherited diseases, including cancer.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Amon, Angelika
Ray, Diviya
Sive, Hazel
Date Added:
02/01/2018
Introductory Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.
Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Jacks, Tyler
Sinha, Diviya
Sive, Hazel
Date Added:
02/01/2013
Introductory Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health and disease.
Acknowledgements
The study materials, problem sets, and quiz materials used during Spring 2005 for 7.014 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course 7.014. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chisholm, Penny
Khodor, Julia
Mischke, Michelle
Walker, Graham
Date Added:
02/01/2005
Laboratory Fundamentals in Biological Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, rigorous data analysis, and scientific communication form the underpinnings of this subject. Three discovery-based experimental modules focus on genome engineering, expression engineering, and biomaterial engineering.
This OCW site is based on the source OpenWetWare class Wiki, found at 20.109(F07): Laboratory Fundamentals of Biological Engineering.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Banuazizi, Atissa
Belcher, Angela
Endy, Drew
Kuldell, Natalie
Lerner, Neal
Stachowiak, Agi
Date Added:
09/01/2007
Yeast colony PCR
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this module, students design and implement a strategy to identify yeast deletion strains by colony PCR. At the end of this module, students should be able to:design oligonucleotide primers to amplify specific DNA sequences with PCRexplain how changes to the annealing and extension times affect the production of PCR productsuse PCR to distinguish mutant yeast strains with different genotypesThis module is part of a semester-long introductory lab course, Investigations in Molecular Cell BIology, at Boston College.

Subject:
Biology
Genetics
Material Type:
Module
Author:
Clare OConnor
Date Added:
08/29/2018