Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
Science fiction is full of superpowered mutants, but in reality, mutations are …
Science fiction is full of superpowered mutants, but in reality, mutations are much more diverse and complex. Sometimes, they can change someone’s entire body, and other times, we don’t notice them at all! In this episode, we’ll unpack what mutations are, how they work (including substitutions and frameshift mutations), and how scientists are learning to control mutations using tools like CRISPR/Cas9 and gene therapy. Chapters: Introduction: Mutations Outside the Movies What Are Mutations? What Determines Mutations' Effects? Types of Mutations Positive, Negative, or Neutral? Gene Therapy & CRISPR Pharmacogenomics Review & Credits Credits
This course reviews the key genomic technologies and computational approaches that are …
This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scenario, in order to set the stage and engage the student by showing: why is this important to know? how will the information presented be brought to bear on medical practice? The final section presents the ethical, legal, and social issues surrounding genomic medicine. A vision of how genomic medicine relates to preventative care and public health is presented in a discussion forum with the students where the following questions are explored: what is your level of preparedness now? what challenges must be met by the healthcare industry to get to where it needs to be?
Lecturers Dr. Atul J. Butte Dr. Steven A. Greenberg Dr. Alvin Thong-Juak Kho Dr. Peter Park Dr. Marco F. Ramoni Dr. Alberto A. Riva Dr. Zoltan Szallasi Dr. Jeffrey Mark Drazen Dr. Todd Golub Dr. Joel Hirschhorn Dr. Greg Tucker-Kellogg Dr. Scott Weiss
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.