This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"In the absence of oxygen, some prokaryotes can degrade organic matter via anaerobic digestion. This occurs in natural settings, like wetlands, and industrial ones, like wastewater treatment or biogas production. But what about viruses? Bacteriophages can impact their hosts’ community structure through selective pressure and have been used to influence microbial communities, such as through pathogen control. A recent study examined the virome of anaerobic digestion communities undergoing prophage- inducing environmental stresses. The virome was almost entirely composed of tailed bacteriophages of the order Caudovirales. Metagenome reconstruction revealed 1,092 viral genomes and 120 prokaryotic genomes, and over half of the prokaryotic genomes contained a provirus in their genomic sequence. In general, species of viruses and prokaryotes could be grouped by having similar reactions to stressors. Archaea had the most pronounced reactions to stressors and featured behaviors unique to those species..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Explain transformation …
By the end of this section, you will be able to:Explain transformation of DNADescribe the key experiments that helped identify that DNA is the genetic materialState and explain Chargaff’s rules
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Bacteria and viruses are locked in a perpetual arms race. As bacterial viruses continuously try to penetrate and infect bacteria, bacteria are endlessly evolving anti-viral defense systems. Understanding how this struggle unfolds is critical, as bacteria are a vital component of many emerging biotechnologies and foods we eat. Scientists recently explored the battles that take place in cheese, where the presence of only a few species of bacteria makes an ideal, simple, and reproducible model system. The communities they analyzed harbored highly diverse defense mechanisms, even among nearly identical strains, suggesting rapid evolution. Additionally, the abundances of CRISPR spacers and their phage targets were correlated, suggesting that bacteria have genetic mechanisms for effectively defending against viral foes..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Staphylococcus aureus is a common commensal that can cause an array of serious human diseases, from mild skin infection to life-threatening disease. S. aureus can rapidly adapt to selective pressures such as antibiotics, and this ability is enhanced by biofilm formation on implanted medical devices. With antibiotic resistance on the rise, there is a growing need to find non-antibiotic alternatives to treat serious infections. One such alternative is bacteriophage therapy, which introduces viruses that selectively infect and kill bacteria. A recent study sought to better understand the impact of bacteriophage therapy on the host microbiome. In a follow-up to a case study of a patient with an implanted cardiac device who was treated with bacteriophage therapy combined with antibiotics for a persistent S. aureus infection, researchers used high-throughput sequencing to evaluate patient microbial samples from the gut, saliva, and skin..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Blue-green algae, or cyanobacteria, are photosynthetic bacteria that live in water and are important oxygen producers. Human-driven changes are a major factor causing seasonal cyanobacterial blooms, which can cause mass death of aquatic animals. Bacteria-infecting viruses, called phages, could potentially be used to control these outbreaks with minimal environmental disruption. But to date few freshwater ‘cyanophages’ have been isolated or had their genomes sequenced. Recently, researchers isolated a strain of cyanobacteria from Lake Chaohu, a massive lake in China with seasonal cyanobacterial blooms. Using the new cyanobacteria strain, they isolated five new freshwater cyanophages with varying tail structures from the same lake. While viruses can have RNA genomes or even single-stranded DNA genomes, all five isolated phages had double-stranded DNA genomes. Further analysis suggested that they all use different DNA packaging mechanisms and are evolutionarily distinct..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Buried within glaciers is a history of ancient ecosystems, including microbes and viruses past. Some of the airborne microbes and viruses that populate our atmosphere are often carried by snowflakes or dust onto the surface of glaciers. By studying glacial ice cores, scientists can reconstruct histories of microbes and viruses and the climatic and environmental conditions they experienced. Two problems that plague current methods of analyzing ice cores are contamination and low microbe biomass. To address these challenges, researchers recently developed a method for decontaminating ice core surfaces and extracting clean inner ice to study microbes and viruses. When applied to ice from the Guliya ice cap on the Tibetan Plateau in China, the method revealed a unique viral community of mostly novel taxa, providing the first window into viral genomes, communities, and functions in ancient glacier environments..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"The laboratory and computational tools available to microbiome researchers have greatly improved in recent years, especially in assembling genomes from complex communities. Most of the research to date has focused on macrodiversity, which is classical ecology metrics like population abundance, α-diversity, and β-diversity. But microdiversity — population genetics metrics like single nucleotide polymorphisms (SNPs) and selective pressures — is important to consider. There are several technical and accessibility issues that hinder widespread analysis of microdiversity in metagenomic datasets, but the recently developed open-access software tool MetaPop is designed to close this gap. MetaPop provides a user-friendly interface to analyze both the macro- and microdiversity of microbial and viral community metagenomes. For small datasets, MetaPop can be run on a laptop, making it a practical choice for non-bioinformaticians or labs without access to high-powered computing..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Our gut microbiomes are rich communities of bacteria, archaea, and viruses that play critical roles in our health. But although bacteria and archaea in the gut are well-characterized, the gut virome is less understood. A recent study sought to better understand a specific component of the gut virome. Double-stranded DNA bacteriophages (dsDNA phages) – viruses that infect bacteria – play pivotal roles in structuring the human gut microbiome. Using a new multilevel framework for taxonomic classification of viruses, researchers searched human gut metagenomes for phage hallmark genes. They identified 3,738 apparently complete phage genomes, representing 451 putative genera. Several of the genera were new, only distantly related to previously identified phages. Two of the candidate families – “Flandersviridae” and “Quimbyviridae” – included common members of the gut virome that infect ubiquitous gut bacteria, while the third family, “Gratiaviridae,” comprised less abundant phages..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Bacteriophages are everywhere, influencing everything from microbial evolution to biogeochemical cycling. Phages, however, remain among the least understood members of complex microbiomes. Do the tools used to identify phages introduce biases? A recent study compared ten of the most widely used bioinformatics tools designed to detect phages from metagenomics data. Overall, tool performance varied substantially in the analysis of different benchmarking datasets. For a set of artificial RefSeq contigs, PPR Meta and VirSorter2 showed the highest performance. Kraken2 showed the highest accuracy for a mock community benchmark. And generally, k-mer tools performed better than similarity- or gene-based tools. The study offers insight into the biases introduced by different tools, offers guidance into which one is best suited for different use cases, and suggests that rather than relying on any one tool, researchers may do well to combine different ones to suit their research needs..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Bacteriophages are viruses that infect and kill bacteria as a way to control their host populations. Complex soil microbial communities can be better understood by studying interactions between phages and bacteria. In a new paper, researchers quantified the extent to which phages drive the assembly and functioning of soil bacterial communities. They tested natural and sterilized soil incubated with pairs of soil communities, applying various native and non-native phage suspensions. Key differences in microbiota were dependent on the community assembly scenarios, suggesting that host community diversity and composition are important factors in phage behavior, while phage pressure may impact soil microbial functions. The results highlight the importance of phage interactions with soil bacterial communities in understanding the dynamics and functioning of terrestrial ecosystems..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.