Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:List and …
By the end of this section, you will be able to:List and describe the functions of the structural components of a neuronList and describe the four main types of neuronsCompare the functions of different types of glial cells
This course provides an outline of vertebrate functional neuroanatomy, aided by studies …
This course provides an outline of vertebrate functional neuroanatomy, aided by studies of comparative neuroanatomy and evolution, and by studies of brain development. Topics include early steps to a central nervous system, basic patterns of brain and spinal cord connections, regional development and differentiation, regeneration, motor and sensory pathways and structures, systems underlying motivations, innate action patterns, formation of habits, and various cognitive functions. In addition, lab techniques are reviewed and students perform brain dissections.
By the end of this section, you will be able to:Distinguish between …
By the end of this section, you will be able to:Distinguish between the two major cell types of the nervous system, neurons and gliaIdentify the basic parts of a neuron
This course considers molecular control of neural specification, formation of neuronal connections, …
This course considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior.
This resource provides a set of narrated animations demonstrating the normal and …
This resource provides a set of narrated animations demonstrating the normal and toxic actions within the axon and/or synapse of neurons. A brief overview of the neuron structure and neuron-to-neuron communication is presented first. Next, axon normal functions and synapse normal functions are presented in small segments. Each set of normal functions are followed by the associated toxic actions (pyrethroid toxicity of the axon, organophosphate toxicity and neonicotinoid toxicity of the synapse, and DDT toxicity occurring in both the axon and the synapse). The interface allows the user to compare and contrast the normal functions with those with toxic actions.
This course, as a part of MIT’s Center for Neurobiological Engineering curriculum, …
This course, as a part of MIT’s Center for Neurobiological Engineering curriculum, explores cutting-edge neurotechnology that is essential for advances in all aspects of neuroscience, including improvements in existing methods as well as the development, testing and discussion of completely new paradigms. Readings and in-class sessions cover the fields of electrophysiology, light microscopy, cellular engineering, optogenetics, electron microscopy, MRI / fMRI, and MEG / EEG. The course is designed with lectures that cover the background, context, and theoretical descriptions of neurotechnologies, and labs, which provide firsthand demonstrations as well as in situ lab tours.
Psychology is designed to meet scope and sequence requirements for the single-semester …
Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan
By the end of this section, you will be able to:Identify the …
By the end of this section, you will be able to:Identify the basic parts of a neuronDescribe how neurons communicate with each otherExplain how drugs act as agonists or antagonists for a given neurotransmitter system
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.