What would happen if a portion of the Antarctic Ice Sheet were …
What would happen if a portion of the Antarctic Ice Sheet were to melt? This video segment adapted from NOVA uses animations to show the effect of a 6-meter sea-level rise on coastal cities across the world.
Students will complete this survey that determines their personal and household contributions …
Students will complete this survey that determines their personal and household contributions to atmospheric Carbon dioxide by using information about their previous year's consumption. They will understand that Carbon dioxide is a greenhouse gas produced by the combustion of fossil fuels, and that its production can be minimized by taking personal steps to conserve.
Students use their senses to describe what the weather is doing and …
Students use their senses to describe what the weather is doing and predict what it might do next. After gaining a basic understanding of weather patterns, students act as state park engineers and design/build "backyard weather stations" to gather data to make actual weather forecasts.
Storms can have devastating impacts on coastal communities. Typically, tropical storms like …
Storms can have devastating impacts on coastal communities. Typically, tropical storms like hurricanes get the most attention, but there are other types of storms that occur at more northern latitudes that can be just as destructive. For example, in January of 2018, Winter Storm Grayson caused more than 300,000 power outages and $1.1 billion in damage, and resulted in 22 confirmed casualties along the eastern seaboard. In this module, students will learn how barometric pressure changes during a storm, analyze the effect of storms on oceanographic variables, classify a storm as a bomb cyclone, and compare a bomb cyclone to a hurricane. Ultimately students will use their quantitative reasoning skills to manipulate and visualize data during storms in the northeastern United States.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this video segment adapted from NOVA, scientists are on the hunt …
In this video segment adapted from NOVA, scientists are on the hunt for tornadoes. Using Doppler radar, they gather data in the hopes of solving the mystery of how tornadoes form.
This activity is a classroom and schoolyard investigation where students collect daily …
This activity is a classroom and schoolyard investigation where students collect daily temperature and precipitation readings, weather observations, and weekly phenology reports in a phenology binder and in nature journals. Students then analyze this data and compare to recorded values in the Weatherguide calendar.
Climographs, graphic plots of monthly temperature and precipitation, allow students to see …
Climographs, graphic plots of monthly temperature and precipitation, allow students to see how differences in insolation at various locations affect rates of heating and cooling. In this activity, students use climographs to plot locations using latitude and longitude, calculate annual temperature ranges, and relate unequal rates of heating and cooling to climate variations. They will also construct climographs for two locations in New York, analyze them, and answer questions about their observations.
The purpose of this activity is to construct a model that will …
The purpose of this activity is to construct a model that will provide students with a visual representation of parts per billion. Students work in teams to construct cubes of different volumes and to compare them to get a feel for parts per million by volume and parts per billion by volume. The intended outcome is that students gain a feeling for the small quantities of gases, such as ozone, present in the Earth's atmosphere.
This video segment adapted from the Atmospheric Radiation Program explains the differences …
This video segment adapted from the Atmospheric Radiation Program explains the differences in the formation of tropical convective cloud systems over islands and over the ocean.
This jigsaw activity introduces students with Arctic weather data using a role-playing …
This jigsaw activity introduces students with Arctic weather data using a role-playing activity that has students read and interpret graphs while considering the optimal time to plan a research mission to the Arctic.
This course begins with a study of the role of dynamics in …
This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus’ atmosphere, the generation of atmospheric turbulence, and stationary waves among other problems. The quasi-geostrophic approximation is derived, and the resulting equations are used to examine the hydrodynamic stability of the circulation with applications ranging from convective adjustment to climate.
This video segment adapted from NASA's Goddard Space Flight Center discusses how …
This video segment adapted from NASA's Goddard Space Flight Center discusses how a drought can have negative effects locally, for example by increasing the number of forest fires, and also globally, for example by impacting air quality thousands of miles away.
This video segment adapted from NASA's Goddard Space Flight Center describes El …
This video segment adapted from NASA's Goddard Space Flight Center describes El Niño, how it forms, and the chain reaction of consequences it triggers around the globe.
This video segment adapted from NASA's Goddard Space Flight Center explains how …
This video segment adapted from NASA's Goddard Space Flight Center explains how hurricanes develop and why there are fewer hurricanes in the Atlantic Ocean in strong El Niño years.
This module explores the composition of the earth's atmosphere, how temperature and …
This module explores the composition of the earth's atmosphere, how temperature and pressure vary in the atmosphere, and the scientific developments that led to an understanding of these basic concepts.
Each student will keep a science journal during each of the four …
Each student will keep a science journal during each of the four seasons. Students will record observations of the general outdoor environment they visit and then will make observations of one specific item from the habitat in each season. At the end of the school year, students will make comparisons of their seasonal drawings and share the results with the class. The purpose of the activity is to introduce students to the concept of using a science journal to record information, to have students use science tools to make scientific observations and to make observational drawings in nature and compare the results throughout the seasons. After completing this activity, students will know about seasonal changes in a particular habitat. They will learn how to make detailed observations, record their results, make comparisons, and share information using a standard format.
A learning activity for the "Do You Know That Clouds Have Names?" …
A learning activity for the "Do You Know That Clouds Have Names?" book in the Elementary GLOBE series. Each student will be given the opportunity to create their own cumulus cloud out of white paper and mount it on blue paper. Students will also complete the Cloud Fun Student Activity Sheet that includes a description of the cloud and what the weather was like on the day the cloud was observed. The purpose of the activity is to help students identify cumulus clouds and observe the weather conditions on days that they see cumulus clouds. Students will learn about a cumulus cloud's shape and appearance, how to verbally describe cumulus clouds, and what the weather is generally like when these clouds appear in the sky.
A learning activity for the "Do You Know That Clouds Have Names?" …
A learning activity for the "Do You Know That Clouds Have Names?" book in the Elementary GLOBE series. Using information from the book and their observations, students construct a sky scene with trees and buildings as reference points on the ground and cloud types ordered by altitude in the sky. Students will describe clouds using their own vocabulary and will then correlate their descriptions with the standard classifications of cloud types used by the GLOBE Program. The purpose of the activity is to help students identify some of the characteristics of clouds and to enable students to observe clouds, describe them in a common vocabulary, and compare their descriptions with the official cloud names. Students will be able to identify cloud types using standard cloud classification names. They will know that the names used for the clouds are based on three factors: their shapes, the altitude at which they occur, and whether they are producing precipitation.
A learning activity for the "Do You Know That Clouds Have Names?" …
A learning activity for the "Do You Know That Clouds Have Names?" book in the Elementary GLOBE series. Using information from the book and their observations, students construct a sky scene with trees and buildings as reference points on the ground and cloud types ordered by altitude in the sky. Students will describe clouds using their own vocabulary and will then correlate their descriptions with the standard classifications of cloud types used by the GLOBE Program. The purpose of the activity is to help students identify some of the characteristics of clouds and to enable students to observe clouds, describe them in a common vocabulary, and compare their descriptions with the official cloud names. Students will be able to identify cloud types using standard cloud classification names. They will know that the names used for the clouds are based on three factors: their shapes, the altitude at which they occur, and whether they are producing precipitation.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.