Students define and classify alloys as mixtures, while comparing and contrasting the …
Students define and classify alloys as mixtures, while comparing and contrasting the properties of alloys to those of pure substances. Students learn that engineers investigate the structures and properties of alloys for biomedical and transportation applications. Pre- and post-assessment handouts are provided.
Acting as engineering teams, students take measurements and make calculations to determine …
Acting as engineering teams, students take measurements and make calculations to determine the specific strength of various alloys and then report their data to the rest of the class. Using this class data, students write data-based recommendations to NASA regarding the best alloy to use in the construction of the engine and engine turbines for the Space Launch System that will eventually be used to transport astronauts to Mars.
Students explore the properties of composites using inexpensive materials and processing techniques. …
Students explore the properties of composites using inexpensive materials and processing techniques. They create beams using Laffy Taffy and water, and a choice of various reinforcements (pasta, rice, candies) and fabricating temperatures. Student groups compete for the highest strength beam. They measure flexure strength with three-point bend tests and calculations. Results are compared and discussed to learn how different materials and reinforcement shapes affect material properties and performance.
Introduction to selecting the proper punch and die for air bending or …
Introduction to selecting the proper punch and die for air bending or bottoming when forming on a press brake. Includes charts and methods for selection.
In this electrochemistry activity, learners will explore two examples of electroplating. In …
In this electrochemistry activity, learners will explore two examples of electroplating. In Part 1, zinc from a galvanized nail (an iron nail which has been coated with zinc by dipping it in molten zinc) will be plated onto a copper penny. In Part 2, copper from a penny will be plated onto a nickel.
Students gain an understanding of the difference between electrical conductors and insulators, …
Students gain an understanding of the difference between electrical conductors and insulators, and experience recognizing a conductor by its material properties. In a hands-on activity, students build a conductivity tester to determine whether different objects are conductors or insulators. In another activity, students use their understanding of electrical properties to choose appropriate materials to design and build their own basic circuit switch.
In this activity about chemistry and electricity, learners form a battery by …
In this activity about chemistry and electricity, learners form a battery by placing their hands onto plates of different metals. Learners detect the current by reading a DC microammeter attached to the metal plates. Learners experiment with different metals to find out what combination produces the most current as well as testing what happens when they press harder on the plates or wet their hands. Learners also investigate what happens when they wire the plates to a voltmeter.
This class introduces fundamental issues in sculpture such as site, context, process, …
This class introduces fundamental issues in sculpture such as site, context, process, psychology and aesthetics of the object, and the object’s relation to the body. During the semester Introduction to Sculpture will explore issues of interpretation and audience interaction. As a significant component to this class introductions to a variety of materials and techniques both traditional (wood, metal, plaster) as well as non-traditional (fabric, latex, found objects, rubber, etc.) will be emphasized.
What materials have you touched today? In today's society, virtually every segment …
What materials have you touched today? In today's society, virtually every segment of our personal and professional lives is influenced by the limitations, availability, and economic considerations of the materials used. Through readings and science documentaries, this course will show you how and why certain materials are selected for different applications and how the processing, structure, properties, and performance of materials are intrinsically linked. You will be introduced to the basic science and technology of materials, how the world has been shaped by materials, and how knowledge of materials can be used to understand modern materials and the development of new ones.
This lesson is set up as project based learning on how to …
This lesson is set up as project based learning on how to measure metal. Students will get first hand experience discovering foundational knowledge about tools that measure metal length width and thickness. Then they will get to practice measuring objects and metal.
Given an assortment of unknown metals to identify, student pairs consider what …
Given an assortment of unknown metals to identify, student pairs consider what unique intrinsic (aka intensive) metal properties (such as density, viscosity, boiling or melting point) could be tested. For the provided activity materials (copper, aluminum, zinc, iron or brass), density is the only property that can be measured so groups experimentally determine the density of the "mystery" metal objects. They devise an experimental procedure to measure mass and volume in order to calculate density. They calculate average density of all the pieces (also via the graphing method if computer tools area available). Then students analyze their own data compared to class data and perform error analysis. Through this inquiry-based activity, students design their own experiments, thus experiencing scientific investigation and experimentation first hand. A provided PowerPoint(TM) file and information sheet helps to introduce the five metals, including information on their history, properties and uses.
What happens when sugar and salt are added to water? Pour in …
What happens when sugar and salt are added to water? Pour in sugar, shake in salt, and evaporate water to see the effects on concentration and conductivity. Zoom in to see how different sugar and salt compounds dissolve. Zoom in again to explore the role of water.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"The deep sea is an incredibly harsh environment. The freezing cold and crushing pressure make operations in the deep sea difficult and expensive. However, as we build more deep-sea infrastructure, the need to understand the corrosion of these installments grows too. To close this gap, researchers recently examined 10-year-old deep-sea mooring chains and the surrounding environment. The rate of corrosion was much higher than expected from abiotic factors alone, and the corrosion type, localized deep pitting, also indicated microbial corrosion. Compared to the surrounding sediment, the chains had a distinct microbiome dominated by sulfur-cycling bacteria. Modeling the metabolism of the chain microbiome suggests it is generating energy from the reaction between metallic iron and elemental sulfur. Such metabolic strategies may be particularly important in low-energy environments like this..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This course addresses the design of tribological systems: the interfaces between two …
This course addresses the design of tribological systems: the interfaces between two or more bodies in relative motion. Fundamental topics include: geometric, chemical, and physical characterization of surfaces; friction and wear mechanisms for metals, polymers, and ceramics, including abrasive wear, delamination theory, tool wear, erosive wear, wear of polymers and composites; and boundary lubrication and solid-film lubrication. The course also considers the relationship between nano-tribology and macro-tribology, rolling contacts, tribological problems in magnetic recording and electrical contacts, and monitoring and diagnosis of friction and wear. Case studies are used to illustrate key points.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.