This is a really fun and informative lesson that I do with …
This is a really fun and informative lesson that I do with my high school Programming/technology class to break up the monotony of beginner programming. However; this lesson can be used and applied in essentially any class and for many purposes, and to address many areas. One of the other really nice things about this lesson is that it can be extended to hit many points including physics, math, and advanced engineering.
Throughout the building period, I would present teams with a challenge (puzzle, build, etc…) and the first team to complete it would get a prize. It could be more modification time, extra materials, etc…)
The materials (including hot glue guns) can be purchased at Wal Mart or a similar store for around $20-25, if ordering through your district isn’t an option. With those purchases, it gives you a lot more materials than needed which can be used for additional similar projects.
This is a really fun and informative lesson that I do with …
This is a really fun and informative lesson that I do with my high school Programming/technology class to break up the monotony of beginner programming. However; this lesson can be used and applied in essentially any class and for many purposes, and to address many areas. One of the other really nice things about this lesson is that it can be extended to hit many points including physics, math, and advanced engineering.
Throughout the building period, I would present teams with a challenge (puzzle, build, etc…) and the first team to complete it would get a prize. It could be more modification time, extra materials, etc…)
The materials (including hot glue guns) can be purchased at Wal Mart or a similar store for around $20-25, if ordering through your district isn’t an option. With those purchases, it gives you a lot more materials than needed which can be used for additional similar projects.
This Super Lesson utilizes Project Based Learning to assist learners with designing, …
This Super Lesson utilizes Project Based Learning to assist learners with designing, building, and testing flying contraptions as an introduction to Engineering. The goal of this project is to engage students in collaborative team work and to introduce students to the Science and Engineering Practices: Asking Questions and Defining Problems, Planning and Carrying Out Investigations, and Constructing Explanations and Designing Solutions.
We have offered this Super Lesson as an 8-week elective course, developing and strengthening student interest in applied Math and Science topics. It could also be offered within upper elementary or middle school Science and Math courses. In addition, each week’s topic could be used as a stand alone mini-lesson if time is limited. We have worked to include multiple options within this unit to make it accessible to both general education and special education programs, including recommendations for modifications and extensions.
During this engineering design/build project, students investigate many different solutions to a …
During this engineering design/build project, students investigate many different solutions to a problem. Their design challenge is to find a way to get school t-shirts up into the stands during home sporting events. They follow the steps of the engineering design process to design and build a usable model, all while keeping costs under budget.
Working as engineering teams in this introductory pneumatics lab, students design and …
Working as engineering teams in this introductory pneumatics lab, students design and build working pneumatic (air-powered) systems. The goal is to create systems that launch balls into the air. They record and analyze data from their launches.
The purpose of this lesson is to teach the students about how …
The purpose of this lesson is to teach the students about how a spacecraft gets from the surface of the Earth to Mars. The lesson first investigates rockets and how they are able to get us into space. Finally, the nature of an orbit is discussed as well as how orbits enable us to get from planet to planet specifically from Earth to Mars.
Students learn about catapults, including the science and math concepts behind them, …
Students learn about catapults, including the science and math concepts behind them, as they prepare for the associated activity in which they design, build and test their own catapults. They learn about force, accuracy, precision and angles.
This lesson will discuss the details for a possible future manned mission …
This lesson will discuss the details for a possible future manned mission to Mars. The human risks are discussed and evaluated to minimize danger to astronauts. A specialized launch schedule is provided and the different professions of the crew are discussed. Once on the surface, the crew's activities and living area will be covered, as well as how they will make enough fuel to make it off the Red Planet and return home.
The Mission to Mars curricular unit introduces students to Mars the Red …
The Mission to Mars curricular unit introduces students to Mars the Red Planet. Students discover why scientists are so interested in studying this mysterious planet. Many interesting facts about Mars are revealed, and the history of Martian exploration is reviewed. Students will learn about the development of robotics and how robots are beneficial to science, society and the exploration of space. Details on engineers' involvement in space exploration are presented. Furthermore, students will learn how orbits allow astronauts to move from planet to planet and what type of equipment is used by scientists and engineers to safely explore space. Lastly, the specific details on and human risks for a possible future manned mission to Mars (and back to Earth again!) are discussed.
Students experience the engineering design process as they design and build accurate …
Students experience the engineering design process as they design and build accurate and precise catapults using common materials. They use their catapults to participate in a game in which they launch Ping-Pong balls to attempt to hit various targets.
Students are introduced to statics and dynamics, free-body diagrams, combustion and thermodynamics …
Students are introduced to statics and dynamics, free-body diagrams, combustion and thermodynamics to gain an understanding of the forces needed to lift rockets off the ground. They learn that thrust force is needed to launch rockets into space and the energy for thrust is stored as chemical energy in the rocket's fuel. Then, using the law of conservation of energy, students learn that the chemical energy of the fuel is converted into work and heat energy during a rocket launch. A short PowerPoint® presentation is provided, including two example problems for stoichiometry review. An optional teacher demonstration is described as an extension activity.
Students are introduced to the engineering challenges involved with interplanetary space travel. …
Students are introduced to the engineering challenges involved with interplanetary space travel. In particular, they learn about the gravity assist or "slingshot" maneuver often used by engineers to send spacecraft to the outer planets. Using magnets and ball bearings to simulate a planetary flyby, students investigate what factors influence the deflection angle of a gravity assist maneuver.
In this activity, students investigate the effect that thrust has on rocket …
In this activity, students investigate the effect that thrust has on rocket flight. Students will make two paper rockets that they can launch themselves by blowing through a straw. These "strawkets" will differ in diameter, such that students will understand that a rocket with a smaller exit nozzle will provide a larger thrust. Students have the opportunity to compare the distances traveled by their two strawkets after predicting where they will land. Since each student will have a slightly different rocket and launching technique, they will observe which factors contribute to a strawket's thrust and performance.
In this activity, students investigate the effect that weight has on rocket …
In this activity, students investigate the effect that weight has on rocket flight. Students construct a variety of their own straw-launched rockets, or "strawkets," that have different weights. Specifically, they observe what happens when the weight of a strawket is altered by reducing its physical size and using different construction materials. Finally, the importance of weight distribution in a rocket is determined.
This lesson introduces students to the art of designing an airplane through …
This lesson introduces students to the art of designing an airplane through paper airplane constructions. The goal is that students will learn important aircraft design considerations and how engineers must iterate their designs to achieve success. Students first follow several basic paper airplane models, after which they will then design their own paper airplane. They will also learn how engineers make models to test ideas and designs.
What makes rockets fly straight? What makes rockets fly far? Why use …
What makes rockets fly straight? What makes rockets fly far? Why use water to make the rocket fly? Students are challenged to design and build rockets from two-liter plastic soda bottles that travel as far and straight as possible or stay aloft as long as possible. Guided by the steps of the engineering design process, students first watch a video that shows rocket launch failures and then participate in three teacher-led mini-activities with demos to explore key rocket design concepts: center of drag, center of mass, and momentum and impulse. Then the class tests four combinations of propellants (air, water) and center of mass (weight added fore or aft) to see how these variables affect rocket distance and hang time. From what they learn, student pairs create their own rockets from plastic bottles with cardboard fins and their choices of propellant and center of mass placement, which they test and refine before a culminating engineering field day competition. Teams design for maximum distance or hang time; adding a parachute is optional. Students learn that engineering failures during design and testing are just steps along the way to success.
Building on an introduction to statics, dynamics free-body diagrams, combustion and thermodynamics …
Building on an introduction to statics, dynamics free-body diagrams, combustion and thermodynamics provided by the associated lesson, students design, construct and test their own rocket engines using sugar and potassium nitrate an opportunity to apply their knowledge of stoichiometry. This activity helps students understand that the energy required to launch a rocket comes from the chemical energy stored in the rocket fuel. The performance of each engine is tested during a rocket launch, after which students determine the reasons for the success or failure of their rockets.
Teacher Trevor MacDuff, students Audrey and Jack, and KMBC9 Meteorologist Neville Miller …
Teacher Trevor MacDuff, students Audrey and Jack, and KMBC9 Meteorologist Neville Miller discuss their balloon launch and what students can learn from a launch.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.