Short Description: This book is adapted from Anatomy and Physiology by Openstax. …
Short Description: This book is adapted from Anatomy and Physiology by Openstax. The text is designed to supplement an Anatomical Basis of Injury in Athletic Training course while providing review of basic Anatomy and Physiology.
Word Count: 124069
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
The course, which spans two thirds of a semester, provides students with …
The course, which spans two thirds of a semester, provides students with a research-inspired laboratory experience that introduces standard biochemical techniques in the context of investigating a current and exciting research topic, acquired resistance to the cancer drug Gleevec. Techniques include protein expression, purification, and gel analysis, PCR, site-directed mutagenesis, kinase activity assays, and protein structure viewing. This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format. Acknowledgments Development of this course was funded through an HHMI Professors grant to Professor Catherine L. Drennan.
This subject deals primarily with kinetic and equilibrium mathematical models of biomolecular …
This subject deals primarily with kinetic and equilibrium mathematical models of biomolecular interactions, as well as the application of these quantitative analyses to biological problems across a wide range of levels of organization, from individual molecular interactions to populations of cells.
A free online textbook for biophysical chemistry. The book covers probability, statistics, …
A free online textbook for biophysical chemistry. The book covers probability, statistics, thermodynamics, kinetics, Monte Carlo methods, biochemistry, diffusion, stochastic processes, and others.
We help students see the connection between college level chemistry course work …
We help students see the connection between college level chemistry course work and their differential equations coursework. We do this through modeling kinetics, or rates of chemical reaction. We offer many opportunities to model these chemical reactions with data, some of which comes from traditional introductory chemistry textbooks. We ask students to verify their model through parameter estimation. We use Excel’s Trendline addition to graphs/charts to select the models for the data and transformed data to take advantage of Trendline’s set function choices and we also use Mathematica’s direct nonlinear fitting capabilities.
This course applies the concepts of reaction rate, stoichiometry and equilibrium to …
This course applies the concepts of reaction rate, stoichiometry and equilibrium to the analysis of chemical and biological reacting systems, derivation of rate expressions from reaction mechanisms and equilibrium or steady state assumptions, design of chemical and biochemical reactors via synthesis of chemical kinetics, transport phenomena, and mass and energy balances. Topics covered include: chemical/biochemical pathways; enzymatic, pathway, and cell growth kinetics; batch, plug flow and well-stirred reactors for chemical reactions and cultivations of microorganisms and mammalian cells; heterogeneous and enzymatic catalysis; heat and mass transport in reactors, including diffusion to and within catalyst particles and cells or immobilized enzymes.
This collection of videos, animations and documents comes from the NCSSM AP …
This collection of videos, animations and documents comes from the NCSSM AP chemistry online course. Chapter fifteen provides practice and demonstrations related to chemical kinetics.
The theoretical frameworks of Hartree-Fock theory and density functional theory are presented …
The theoretical frameworks of Hartree-Fock theory and density functional theory are presented in this course as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"What we eat can affect the body’s immune response, and in extreme cases, food intolerance, diabetes, or inflammatory diseases can occur. Metabolites found in dairy products or fermented food are sensed by two receptor proteins involved in immune function. One of these proteins, HCA₃, has an anti-inflammatory effect, while the other, GPR84, activates the immune response. Unfortunately, the mechanism underlying these different processes is unclear. A recent study investigated whether differences in the proteins’ signaling kinetics and trafficking could explain their different effects. Using a label-free technique based on dynamic mass redistribution inside the cell, they found that the receptors HCA₃ and GPR84 had distinct signaling kinetics upon activation with different metabolites. Signaling was affected by the receptors’ localization, which depends on proteins such as dynamin-2 and β-arrestin-2..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
"Fluid-Solid Heterogeneous Reaction Kinetics" is an essential educational resource designed to provide …
"Fluid-Solid Heterogeneous Reaction Kinetics" is an essential educational resource designed to provide students with a comprehensive understanding of reaction dynamics in solid-gas systems. This unit comprises two insightful lessons focusing on heterogeneous catalysis and the Shrinking Core Model. Through detailed exploration of reaction mechanisms, rate-determining processes, and model analysis, students gain invaluable insights into optimizing reaction conditions and enhancing catalytic efficiency. By studying fluid-particle kinetics and reaction models, learners develop critical thinking skills essential for tackling challenges in chemical engineering and industrial catalysis, paving the way for advancements in reaction engineering and sustainable process development.
Course DescriptionContinuation of Chemistry 151 with an emphasis on kinetics and equilibrium, …
Course DescriptionContinuation of Chemistry 151 with an emphasis on kinetics and equilibrium, nuclear, aqueous solution, and electro chemistry. Prerequisite: CHM 151. General Education: Physical and Biological Lab Science. Four lecture. Three lab.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"For more than 5,000 years, metals and alloys have been formed in roughly the same way—propelling civilization from the Bronze Age to the Industrial Revolution and to the Aerospace Age. Now there’s a new technique on the horizon that could help us take another big leap forward. It’s called high-entropy alloying, and the latest Focus issue of the Journal of Materials Research showcases scientists’ and engineers’ latest efforts in understanding high-entropy alloys and their potential applications. Traditional physical metallurgy uses an element with attractive properties as a base, and adds small amounts of other elements to improve those and other properties. Over thousands of years, various elements have been used as the base: first copper, then iron, then one by one across the periodic table, until researchers developed the first titanium alloys in the 1950s. It’s a method that’s proven incredibly effective. But there are signs that the approach may be reaching its natural limit..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Motion is all around us, the universe is full of moving matter …
Motion is all around us, the universe is full of moving matter and this motion is surprisingly predictable. The field of science and engineering that studies time-dependent motion in the presence of forces is called Dynamics. In this book we will introduce the core concepts in dynamics and provide a comprehensive toolset to predict and analyse planar 2D motion of point masses and rigid bodies. The material includes kinematic analysis, Newton’s laws, Euler’s laws, the equations of motion, work, energy, impulse and momentum. Vector-based methods are discussed for systematically solving essentially any problem in 2D dynamics. The book provides a bachelor level introduction for any science and engineering student that can serve as a basis for more advanced courses in dynamics.
This module is thought of to be used by teachers and students. …
This module is thought of to be used by teachers and students. It's main area of concern is rotational motion and mass moment of inertia, two concepts which in my experience as a teacher, often makes students nervous due to the seemingly very abstract quantities involved in rotational motion. The goal of the following module is to bridge the gap between the students preliminary working knowledge in classical mechanics, while providing a hands-on approach to teaching the subject of the kinetics of rotating, solid objects. Learning ObjectivesIntroduce students to the fundamentals of the physics of rotating objects, with a suitable mix of theoretical and practical problem solving activites involving torque and mass moment of inertia.Allow students to relate their newfound understanding to real world situations where the theory allows students to analyse rotational motion in everyday situations as well as engineering applications and beyond.Enable the students to work through the concepts required before potentially proceeding with more advanced topics such as rotational energy and angular momentum.
Chemists are often interested in how fast a reaction will occur, and …
Chemists are often interested in how fast a reaction will occur, and what we can do to control the rate. The study of reaction rates is called kinetics, and we will learn about average reaction rate, rate laws, the Arrhenius equation, reaction mechanisms, catalysts, and spectrophotometry.
Open textbook in statics and dynamics for engineering undergraduates. Covers particles and …
Open textbook in statics and dynamics for engineering undergraduates. Covers particles and rigid bodies (extended bodies), structures (trusses), simple machines, kinematics, and kinetics, as well as introductory vibrations. Includes text, videos, images, and worked examples (written and video).
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Over the past several decades, a concerning health trend has emerged among children: ACL injuries are on the rise. That’s got clinicians re-thinking the best approach to recovery. Non-operative measures such as physical therapy, bracing, and activity modification used to be the norm. Now, given the concerning statistics, many believe surgical reconstruction could actually be the more conservative approach long term. New findings reported in the July issue of the American Journal of Sports Medicine appear to support that view. They suggest that ACL reconstruction through an iliotibial band technique can restore kinetic and kinematic function in the growing knee—and maintain it well into adulthood. The authors of the study tested the knees of 38 individuals who underwent iliotibial band ACL reconstruction as skeletally immature children. Because individuals enrolled in the study were of different ages, they represented a spectrum of post-surgery follow-up times, ranging from 1 to 20 years..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"A team of researchers based at West Virginia University has devised an innovative way to potentially monitor enzyme activity in vivo using electron paramagnetic resonance imaging. The method could provide new insights into the molecular underpinnings of many types of disease. The team specifically focused on tracking enzymatic dephosphorylation. Abnormalities in dephosphorylation have been linked to disorders ranging from cancer to Alzheimer disease. Monitoring such malfunction in vivo can provide crucial details into disease state and progression, but direct measurement of enzyme activity within a living organism remains extremely challenging. Many imaging approaches that might be used for this purpose are hampered by concerns such as low sensitivity and penetration depth. Such limitations prompted the researchers to turn to EPRI – a method with high intrinsic sensitivity and specificity..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This subject deals primarily with equilibrium properties of macroscopic systems, basic thermodynamics, …
This subject deals primarily with equilibrium properties of macroscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and rates of chemical reactions. Acknowledgements The material for 5.60 has evolved over a period of many years, and therefore several faculty members have contributed to the development of the course contents. The following are known to have assisted in preparing the lecture notes available on OpenCourseWare: Emeritus Professors of Chemistry: Robert A. Alberty, Carl W. Garland, Irwin Oppenheim, John S. Waugh. Professors of Chemistry: Moungi Bawendi, John M. Deutch, Robert W. Field, Robert G. Griffin, Keith A. Nelson, Robert J. Silbey, Jeffrey I. Steinfeld. Professor of Bioengineering and Computer Science: Bruce Tidor. Professor of Chemistry, Rice University: James L. Kinsey. Professor of Physics, University of Illinois: Philip W. Phillips.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.