Updating search results...

Search Resources

4 Results

View
Selected filters:
  • inverters
Electronic Power Conversion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to power electronics. First the principles of power conversion with switching circuits are treated as well as main applications of power electronics. Next the basic circuits of power electronics are explained, including ac-dc converters (diode rectifiers), dc-dc converters (non-isolated and isolated) and dc-ac converters (inverters). Related issues such as pulse width modulation, methods of analysis, voltage distortion and power quality are treated in conjunction with the basic circuits. The main principles of operation of most commonly used power semiconductor switches are explained. Finally, the role of power electronics in sustainable energy future, including renewable energy systems and energy efficiency is discussed.

Study Goals
To get acquainted with applications of power electronics, to obtain insight in the principles of power electronics, to get an overview of power electronic circuits and be able to select appropriate circuits for specific applications and finally to be able to analyse the circuits. The focus in the course is on analysis and to a lesser extent on design.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
J. Popovic
Date Added:
02/09/2016
Power Electronics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.334 examines the application of electronics to energy conversion and control. Topics covered include: modeling, analysis, and control techniques; design of power circuits including inverters, rectifiers, and DC-DC converters; analysis and design of magnetic components and filters; and characteristics of power semiconductor devices. Numerous application examples will be presented such as motion control systems, power supplies, and radio-frequency power amplifiers. The course is worth 6 engineering design points.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Perreault, David
Date Added:
02/01/2007
Solar Energy: Photovoltaic (PV) Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course participants will learn how to turn solar cells into full modules; and how to apply full modules to full photovoltaic systems.

The course will widely cover the design of photovoltaic systems, such as utility scale solar farms or residential scale systems (both on and off the grid). You will learn about the function and operation of various components including inverters, batteries, DC-DC converters and their interaction with both the modules and the grid.

After learning about the components, learners will be able to correctly apply them during main design steps taken when planning a real PV installation with excellent performance and reliability.

Through modelling, you will gain a deeper understanding of PV systems performance for different solar energy applications, and proficiency in estimating the energy yield of a client’s potential system.

This course is part of the Solar Energy Engineering MicroMasters Program designed to cover all physics and engineering aspects of photovoltaics: photovoltaic energy conversion, technologies and systems.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr. R.A. Vasudevan
Ir. O. Isabella
Date Added:
12/10/2019