This video segment from the Secret of Life School Video: "Genetic Medicine: …
This video segment from the Secret of Life School Video: "Genetic Medicine: Tinkering with Our Genes" explores the potential for gene therapy to cure diseases like Alzheimer's.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Identify major …
By the end of this section, you will be able to:Identify major viral illnesses that affect humansCompare vaccinations and anti-viral drugs as medical approaches to viruses
By the end of this section, you will be able to:Describe gel …
By the end of this section, you will be able to:Describe gel electrophoresisExplain molecular and reproductive cloningDescribe uses of biotechnology in medicine and agriculture
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Mesenchymal stem cells (MSCs) are multifunctional cells with the ability to reduce inflammation and repair tissue when injected directly. But MSC use is controversial, especially in patients with cancer or in cancer remission, as MSCs can release growth factors that can promote tumor growth. Fortunately, new research is showing that certain MSC contents can exert targeted beneficial effects without these drawbacks, most notably, microRNAs packaged inside exosomes. These loaded exosomes can accumulate at sites of tissue damage, and many studies suggest that MSC exosomes can be applied to cancer therapy, gene therapy, drug delivery, regenerative medicine, and other biomedical applications. Further research could reveal new and more effective ways of packaging and transferring exosomes from MSCs to recipient cells, and thereby lead to new methods of treating and monitoring various diseases..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This course provides a foundation for understanding the relationship between molecular biology, …
This course provides a foundation for understanding the relationship between molecular biology, developmental biology, genetics, genomics, bioinformatics, and medicine. It develops explicit connections between basic research, medical understanding, and the perspective of patients. Principles of human genetics are reviewed. We translate clinical understanding into analysis at the level of the gene, chromosome and molecule; we cover the concepts and techniques of molecular biology and genomics, and the strategies and methods of genetic analysis, including an introduction to bioinformatics. Material in the course extends beyond basic principles to current research activity in human genetics.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"How do you fix a broken heart? According to a new study, TREEs can help—that is, tissue regeneration enhancer elements. The study found that these short DNA control modules from zebrafish can precisely regulate gene expression in mammals to promote healing after a heart attack. Heart attack, or myocardial infarction, and heart failure are common and devastating cardiac conditions. But the hearts of adult mammals can’t regenerate well after injury, making treatment difficult. One option is to attempt to use gene therapy with viral vectors to enhance heart cell proliferation, thus improving cardiac regeneration. However, current gene therapies are limited in their ability to control their cargoes, leading to strong, continuous delivery in one or more organs. And unchecked cell proliferation can lead to problems like tumor formation, making methods for precise control essential. Zebrafish TREEs are promising mediators of such precise control..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Hematopoietic stem cells (HSCs) are critical for maintaining healthy blood and immune cell populations. They’re also valuable resources and targets for medical treatments, such as HSC transplantation and gene therapy. However, these blood cell precursors are susceptible to viral infection, which can cause blood disorders and limit the efficacy of HSC-based therapies. In fact, viral infection is a leading cause of complications and death among HSC transplant recipients. For example, latent cytomegalovirus can become reactivated after transplantation leading to immunosuppression, pneumonia, encephalitis, and graft failure. HSC transplantation also reduces the numbers of T cells that are specifically cytotoxic toward the mononucleosis- inducing Epstein–Barr virus. Furthermore, recipients of HSC transplants are more susceptible to infection by SARS-CoV-2, the cause of the COVID-19 pandemic..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.