Updating search results...

Search Resources

76 Results

View
Selected filters:
  • frequency
AM I on the Radio?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups create working radios by soldering circuit components supplied from AM radio kits. By carrying out this activity in conjunction with its associated lesson concerning circuits and how AM radios work, students are able to identify each circuit component they are soldering, as well as how their placement causes the radio to work. Besides reinforcing lesson concepts, students also learn how to solder, which is an activity that many engineers perform regularly giving students a chance to be able to engage in a real-life engineering activity.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandon Jones
Emily Spataro
Lara Oliver
Lisa Burton
Date Added:
09/18/2014
AP Physics 1 review of Waves and Harmonic motion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David quickly explains each concept for waves and simple harmonic motion and does an example question for each one. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
06/29/2018
Beat frequency
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

David explains what beat frequency means, how to find it, and solves a sample problem involving beat frequency. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
07/02/2021
Catching the Perfect SAR Waves!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the importance of the Pythagorean theorem as applied in radar imaging. They use a sensor unit with IRED (infrared emitting diode) to measure triangle distances and the theorem to calculate and verify distances. Student groups calibrate the sensor units to ensure accurate distance measurements. A "pretend" outdoor radar imaging model is provided to groups for sensor unit testing.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luis Avila
Mounir Ben Ghalia
Date Added:
10/14/2015
Designing and Packaging a Distance-Sensing Product
Read the Fine Print
Educational Use
Rating
0.0 stars

Students begin by following instructions to connect a Sunfounder Ultrasonic Sensor and an Arduino Microcontroller. Once they have them set up, students calibrate the sensor and practice using it. Students are then given an engineering design problem: to build a product that will use the ultrasonic sensors for a purpose that they all specify. Students will have to work together to design and test their product, and ultimately present it to their classmates.

Subject:
Applied Science
Computer Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Kendra Randolph
Date Added:
11/29/2018
Electromagnetic Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Electromagnetic Spectrum
Read the Fine Print
Rating
0.0 stars

The electromagnetic spectrum* describes the range of energies associated with different forms of electromagnetic radiation. Electromagnetic radiation travels through space as discrete packets called photons. Photons can transport energy the way particles do, but photons have no mass*. Photons vary in the amount of energy they carry. The energy associated with a photon determines where on the electromagnetic spectrum it falls.

Subject:
Physical Science
Physics
Material Type:
Diagram/Illustration
Interactive
Author:
Science Primer - Andrew Staroscik
Date Added:
10/26/2012
Elementary Statistics (GHC) (Open Course)
Unrestricted Use
CC BY
Rating
0.0 stars

This open course for Elementary Statistics was created through a Round Ten Textbook Transformation Grant:

https://oer.galileo.usg.edu/mathematics-collections/39/

The open course contains ancillary materials for OpenStax Introductory Statistics:

https://openstax.org/details/books/introductory-statistics

Included in the course are introductions to each lesson, lecture slides, videos, and problem questions. Topics include:

Types of Data
Sampling Techniques
Qualitative Data
Frequency Distributions
Descriptive Statistics
Variation and Position
Confidence Intervals
Hypothesis Testing
Chi-Square Goodness of Fit
Linear Regression
Variance ANOVA

Subject:
Mathematics
Statistics and Probability
Material Type:
Full Course
Provider:
Georgia Highlands College
Author:
Brent Griffin
Camille Pace
Elizabeth Clark
Kamisha DeCoudreaux
Katie Bridges
Laura Ralston
Vincent Manatsa
Zac Johnston
Date Added:
10/03/2022
The Energy Problem
Read the Fine Print
Educational Use
Rating
0.0 stars

This six-day lesson provides students with an introduction to the importance of energy in their lives and the need to consider how and why we consume the energy we do. The lesson includes activities to engage students in general energy issues, including playing an award-winning Energy Choices board game, and an optional graphing activity that provides experience with MS Excel graphing and perspectives on how we use energy and how much energy we use.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
09/18/2014
Exploiting Polarization: Designing More Effective Sunglasses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply what they know about light polarization and attenuation (learned in the associated lesson) to design, build, test, refine and then advertise their prototypes for more effective sunglasses. Presented as a hypothetical design scenario, students act as engineers who are challenged to create improved sunglasses that reduce glare and lower light intensity while increasing eye protection from UVA and UVB radiation compared to an existing model of sunglasses—and make them as inexpensive as possible. They use a light meter to measure and compare light intensities through the commercial sunglasses and their prototype lenses. They consider the project requirements and constraints in their designs. They brainstorm and evaluate possible design ideas. They keep track of materials costs. They create and present advertisements to the class that promote the sunglasses benefits, using collected data to justify their claims. A grading rubric and reflection handout are provided.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Extreme Sounds
Read the Fine Print
Educational Use
Rating
0.0 stars

Join Tarissa and Sabrina as they measure and compare the volume of different sounds across New York City in this video from DragonflyTV.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
08/09/2007
Filtering: Extracting What We Want from What We Have
Read the Fine Print
Educational Use
Rating
0.0 stars

Filtering is the process of removing or separating the unwanted part of a mixture. In signal processing, filtering is specifically used to remove or extract part of a signal, and this can be accomplished using an analog circuit or a digital device (such as a computer). In this lesson, students learn the impact filtering can have on different types of signals, the concepts of frequency and spectrum, and the connections these topics have to real-world signals such as musical signals. Students also learn the roles that these concepts play in designing different types of filters. The lesson content prepares students for the associated activity in which they use an online demo and a variety of filters to identify the message in a distress signal heavily corrupted by noise.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dehui Yang
Kyle R. Feaster
Michael B. Wakin
Date Added:
10/14/2015
Filtering: Removing Noise from a Distress Signal
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basic principles of filtering as well as how to apply digital filters to extract part of an audio signal by using an interactive online demo website. They apply this knowledge in order to isolate a voice recording from a heavily noise-contaminated sound wave. After completing the associated lesson, expect students to be able to attempt (and many successfully finish) this activity with minimal help from the instructor.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ayoade Adekola
Chris Light
Connor McKay
Dehui Yang
Kyle R. Feaster
Michael B. Wakin
Date Added:
10/14/2015
Flame Test: Red, Green, Blue, Violet?
Read the Fine Print
Educational Use
Rating
0.0 stars

To become familiar with the transfer of energy in the form of quantum, students perform flame tests, which is one way chemical engineers identify elements by observing the color emitted when placed in a flame. After calculating and then preparing specific molarity solutions of strontium chloride, copper II chloride and potassium chloride (good practice!), students observe the distinct colors each solution produces when placed in a flame, determine the visible light wavelength, and apply that data to identify the metal in a mystery solution. They also calculate the frequency of energy for the solutions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Flood Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to use and graph real-world stream gage data to create event and annual hydrographs and calculate flood frequency statistics. Using an Excel spreadsheet of real-world event, annual and peak streamflow data, they manipulate the data (converting units, sorting, ranking, plotting), solve problems using equations, and calculate return periods and probabilities. Prompted by worksheet questions, they analyze the runoff data as engineers would. Students learn how hydrographs help engineers make decisions and recommendations to community stakeholders concerning water resources and flooding.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Gill
Malinda Schaefer Zarske
Date Added:
09/18/2014
Fourier: Making Waves
Unrestricted Use
CC BY
Rating
0.0 stars

Learn how to make waves of all different shapes by adding up sines or cosines. Make waves in space and time and measure their wavelengths and periods. See how changing the amplitudes of different harmonics changes the waves. Compare different mathematical expressions for your waves.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Sam McKagan
Date Added:
10/02/2006
Fourier: Making Waves (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Learn how to make waves of all different shapes by adding up sines or cosines. Make waves in space and time and measure their wavelengths and periods. See how changing the amplitudes of different harmonics changes the waves. Compare different mathematical expressions for your waves.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Sam McKagan
Date Added:
07/01/2005
Frequency
Read the Fine Print
Educational Use
Rating
0.0 stars

In this interactive activity adapted from the University of Utah's ASPIRE Lab, investigate frequency in terms of trampoline jumps, pendulum swings, and electromagnetic waves.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
08/09/2007
Frequency Adverbs: How often do you…?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Do you do your favorite hobby often, always, sometimes, or never?  These adverbs of frequency can indicate how often you do something.  In this seminar you will be able to listen carefully and identify how often people do activities. ACTFL StandardsCommunication: Interpretive CommunicationCultures: Relating Cultural Products to PerspectivesComparisons: Cultural ComparisonsLearning TargetI can understand some numbers or indication of time period using frequency adverbs.Habits of MindStriving for accuracyCritical Thinking SkillClassifying

Subject:
Languages
Material Type:
Lesson Plan
Author:
Tracy Rains
Date Added:
03/02/2018