Updating search results...

Search Resources

5 Results

View
Selected filters:
  • forces-and-motion
Bridges
Read the Fine Print
Rating
0.0 stars

Bridges come in a wide variety of sizes, shapes, and lengths and are found all over the world. It is important that bridges are strong so they are safe to cross. Design and build a your own model bridge. Test your bridge for strength using a force sensor that measures how hard you pull on your bridge. By observing a graph of the force, determine the amount of force needed to make your bridge collapse.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Building a Zip Line
Read the Fine Print
Rating
0.0 stars

A zip line is a way to glide from one point to another while hanging from a cable. Design and create a zip line that is safe for a hard-boiled egg. After designing a safety egg harness, connect the harness to fishing line or wire connected between two chairs of different heights using a paper clip. Learn to improve your zip line based on data. Attach a motion sensor at the bottom of your zip line and display a graph to show how smooth a ride your egg had!

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
MISA Sample Item (PS) Set- Forces and Trains
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Phenomena:A car has run out of gas on the railroad tracks. It is stopped in the middle of the tracks and is blocking the lane. An oncoming train sees the car, applies the brakes but cannot stop and crashes into the parked car. Storyline: Students are playing with toys and notice that each time one car is moving and runs into another object that is not moving, the second object moves. Sometimes it moves far and other times it only moves a short distance. The students want to find out why toys move various distances when objects come into contact with it. PE Alignment: MS-PS2-1 Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects. MS-PS2-2 Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.Image source: "UP 5525 Crosses Washington Street in West Chicago" by vxla at https://www.flickr.com/photos/vxla/4614440328  CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/) 

Subject:
Physical Science
Material Type:
Lesson Plan
Author:
Krista Wilson
Sandra Smith
Jeremy Haack
MSDE Admin
Date Added:
08/14/2018
Making Waves
Read the Fine Print
Rating
0.0 stars

Repeated motion is present everywhere in nature. Learn how to 'make waves' with your own movements using a motion detector to plot your position as a function of time, and try to duplicate wave patterns presented in the activity. Investigate the concept of distance versus time graphs and see how your own movement can be represented on a graph.

Subject:
Algebra
Chemistry
Education
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Molecular Self-Assembly
Read the Fine Print
Rating
0.0 stars

In this activity, students interact with 12 models to observe emergent phenomena as molecules assemble themselves. Investigate the factors that are important to self-assembly, including shape and polarity. Try to assemble a monolayer by "pushing" the molecules to the substrate (it's not easy!). Rotate complex molecules to view their structure. Finally, create your own nanostructures by selecting molecules, adding charges to them, and observing the results of self-assembly.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011