Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the Calvin cycleDefine carbon fixationExplain how photosynthesis works in the energy cycle of all living organisms
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the Calvin cycleDefine carbon fixationExplain how photosynthesis works in the energy cycle of all living organisms
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Plants are shaped by the many microbes they host. But scientists are only beginning to understand how, especially in underexplored plant structures like aerial roots. A new study shows that the mucilage secreted by these roots can create a microbiome unlike that found in underground roots and nurture an environment that caters to beneficial, nitrogen-fixing bacteria. Researchers made these discoveries by examining the aerial roots of pink lady shrubs—a fast-growing invasive plant. Metabolite profiling of aerial root mucilage revealed a rich cocktail of nutrients that would be expected to support an equally rich variety of microbes. But genomic analyses suggested a mucilage community dominated by nitrogen-fixing diazotrophs. This homogeneous community structure was linked to the presence of the fungus C. raphigera. The antibacterial activity of this fungus was such that only diazotrophs were allowed to thrive, to the benefit of the pink lady shrubs..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.