Updating search results...

Search Resources

8 Results

View
Selected filters:
  • coordinate
GIS, Mathematics and Engineering Integration
Read the Fine Print
Educational Use
Rating
0.0 stars

The concept of geocaching is introduced as a way for students to explore using a global positioning system (GPS) device and basic geographic information (GIS) skills. Students familiarize themselves with GPS, GIS, and geocaching as well as the concepts of latitude and longitude. They develop the skills and concepts needed to complete the associated activity while considering how these technologies relate to engineering. Students discuss images associated with GPS, watch a video on how GPS is used, and review a slide show of GIS basics. They estimate their location using latitude and longitude on a world map and watch a video that introduces the geocaching phenomenon. Finally, students practice using a GPS device to gain an understanding of the technology and how location and direction features work while sending and receiving data to a GIS such as Google Earth.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Measurement and Data
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Andrea Burrows
Jake Schell
Date Added:
10/06/2018
GPS and GNSS
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Today GPS is critical to positioning, navigation, and timing. The smooth functioning of financial transactions, air traffic, ATMs, cell phones and modern life in general around the world depend on GPS. This very criticality requires continuous modernization. The oldest satellites in the current constellation were launched in the 1990s. If you imagine using a computer of that vintage today, it is not surprising that the system is being substantially updated. Global Positioning System (GPS) is now a part of a growing international con?text-the Global Navigation Satellite System, GNSS. This course dives into how GPS and other GNSS systems are designed, how they operate, and the impacts they have on spatial analysis and spatially-enabled systems.

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Full Course
Provider:
Penn State University
Provider Set:
Penn State's College of Earth and Mineral Sciences (http:// e-education.psu.edu/oer/)
Author:
Jan Van Sickle
Date Added:
09/18/2018
Geometry and Geocaching Using GIS & GPS
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take on the role of geographers and civil engineers and use a device enabled with the global positioning system (GPS) to locate geocache locations via a number of waypoints. Teams save their data points, upload them to geographic information systems (GIS) software, such as Google Earth, and create scale drawings of their explorations while solving problems of area, perimeter and rates. The activity is unique in its integration of technology for solving mathematical problems and asks students to relate GPS and GIS to engineering.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Andrea Burrows
Jake Schell
Date Added:
10/05/2018
A LEGO Introduction to Graphing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a LEGO® ball shooter to demonstrate and analyze the motion of a projectile through use of a line graph. This activity involves using a method of data organization and trend observation with respect to dynamic experimentation with a complex machine. Also, the topic of line data graphing is covered. The main objective is to introduce students graphs in terms of observing and demonstrating their usefulness in scientific and engineering inquiries. During the activity, students point out trends in the data and the overall relationship that can be deduced from plotting data derived from test trials with the ball shooter.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Vikram Kapila
Zachary Nishino
Date Added:
09/18/2014
Ultrasound Imaging
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about ultrasound and how it can be used to determine the shapes and contours of unseen objects. Using a one-dimensional ultrasound imaging device (either prepared by the teacher or put together by the students) that incorporates a LEGO(TM) MINDSTORMS(TM) NXT intelligent brick and ultrasonic sensor, they measure and plot the shape of an unknown object covered by a box. Looking at the plotted data, they make inferences about the shape of the object and guess what it is. Students also learn how engineers use high-frequency waves in the design of medical imaging devices, the analysis of materials and oceanographic exploration. Pre/post quizzes, a worksheet and a LEGO rbt program are provided.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Violet Mwaffo
Date Added:
10/14/2015
What's Wrong with the Coordinates at the North Pole?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete a self-guided exercise in worksheet format combined with Google Earth that helps them explore practical and observable differences between different projection and coordinate systems. The activity improves their skills in using various Google Earth features.

Subject:
Applied Science
Computing and Information
Engineering
Geoscience
Physical Science
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrey Koptelov
Nathan Howell
Date Added:
09/18/2014
Who Can Make the Best Coordinate System?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about coordinate systems in general by considering questions concerning what it is that the systems are expected do, and who decided how they look. They attempt to make their own coordinate systems using a common area across all groups and compete to see who can make the best one. Then they analyze why it is that some systems work better than others and consider what those observations mean for evaluating and choosing geographic coordinate systems commonly available today.

Subject:
Applied Science
Engineering
Geoscience
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrey Koptelov
Nathan Howell
Date Added:
09/18/2014
coordinate system
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

A brief treatment on coordinate system

Subject:
Physics
Material Type:
Module
Author:
raj singh
Date Added:
01/14/2019