Updating search results...

Search Resources

20 Results

View
Selected filters:
  • collisions
AP Physics 1 review of Momentum and Impulse
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David quickly reviews the momentum and impulse topics on the AP Physics 1 exam and solves an example problem for each concept. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
David SantoPietro
Date Added:
06/29/2018
Asteroid Impact
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this earth science curricular unit, student teams are presented with the scenario that an asteroid will impact the Earth. In response, their challenge is to design the location and size of underground caverns to shelter the people from an uninhabitable Earth for one year. Driven by this adventure scenario, student teams 1) explore general and geological maps of their fictional state called Alabraska, 2) determine the area of their classroom to help determine the necessary cavern size, 3) learn about map scales, 4) test rocks, 5) identify important and not-so-important rock properties for underground caverns, and 6) choose a final location and size.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Body Physics Remote Lab Manual
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This remote learning lab manual was created to guide students in 100-level physical science courses toward meeting the first outcome in the science category of the Associate of Arts Oregon Transfer Degree:

Gather, comprehend, and communicate scientific and technical information in order to explore ideas, models, and solutions and generate further questions.

The lab design goal was to adapt existing F2F labs (already aligned to AAOT science outcome #1) for a remote learning environment without abandoning the pedagogical advantages provided by combining guided inquiry methods with specialized physics education equipment, such as digital sensors and unique demonstration apparatus. Therefore, many of the labs contain embedded videos of experiments being performed and links to open-access Google spreadsheets containing the data produced by equipment during the experiments. In many cases overlay effects have been added to videos to provide additional experimental parameters, direct students' attention to important occurrences, or and assist with understanding of the experimental methods. The data in the spreadsheets has been edited to remove irrelevant data (e.g. acceleration data automatically collected by lab software before the release of a moving fan cart).

I have found that students do require roughly 1-3 instructor interactions per lab to complete them successfully. As such, the labs current state these labs might not be amenable to a totally asynchronous learning environment.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
OpenOregon
Author:
Lawrence Davis
Date Added:
06/17/2021
Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how different balls react when colliding with different surfaces, giving plenty of opportunity for them to see the difference between elastic and inelastic collisions, learn how to calculate momentum, and understand the principle of conservation of momentum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Bouncing Balls (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students examine how different balls react when colliding with different surfaces. Also, they will have plenty of opportunity to learn how to calculate momentum and understand the principle of conservation of momentum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Ben Sprague
Chris Yakacki
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Can You Hear Me Now?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their knowledge of linear regression and design to solve a real-world challenge to create a better packing solution for shipping cell phones. They use different materials, such as cardboard, fabric, plastic, and rubber bands to create new “composite material” packaging containers. Teams each create four prototypes made of the same materials and constructed in the same way, with the only difference being their weights, so each one is fabricated with a different amount of material. They test the three heavier prototype packages by dropping them from different heights to see how well they protect a piece of glass inside (similar in size to iPhone 6). Then students use linear regression to predict from what height they can drop the fourth/final prototype of known mass without the “phone” breaking. Success is not breaking the glass but not underestimating the height by too much either, which means using math to accurately predict the optimum drop height.

Subject:
Algebra
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Abbie Morneault
Brett Doudican
Kellee Callahan
Date Added:
08/02/2017
Collision Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Jon Olson
Kathy Perkins
Mike Dubson
Mindy Gratny
Sam Reid
Trish Loeblein
Date Added:
10/01/2010
Collisions and Momentum: Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

As a continuation of the theme of potential and kinetic energy, this lesson introduces the concepts of momentum, elastic and inelastic collisions. Many sports and games, such as baseball and ping-pong, illustrate the ideas of momentum and collisions. Students explore these concepts by bouncing assorted balls on different surfaces and calculating the momentum for each ball.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
Crash! Bang!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the physical force of linear momentum movement in a straight line by investigating collisions. They learn an equation that engineers use to describe momentum. Students also investigate the psychological phenomenon of momentum; they see how the "big mo" of the bandwagon effect contributes to the development of fads and manias, and how modern technology and mass media accelerate and intensify the effect.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Data calls plate-blocking rule change a win for pro baseball players
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"In 2014, Major League Baseball, in conjunction with the MLB Players’ Association, instituted a controversial rule change designed to prevent home-plate collisions. Rule 7.13 states that a runner attempting to score may not deviate from his direct path to the plate to initiate contact with the catcher. Similarly, the catcher cannot block the runner’s path in his bid to score. Some players and managers were initially concerned that the rule would alter the nature of the game. But data show that in the higher-stakes matter of player safety, Rule 7.13 is a clear win. Using the MLB Health and Injury Tracking System, a database recording all injuries to players in the major and minor leagues, researchers from MLB and the MLB Players Association looked at how the 2014 rule change has altered the profile of player injuries. Specifically, they compared the incidence of some traumatic brain injuries, or TBIs, in the seasons prior to and after the change..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/12/2019
E.G. Benedict's Ambulance Patient Safety Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students further their understanding of the engineering design process (EDP) while applying researched information on transportation technology, materials science and bioengineering. Students are given a fictional client statement (engineering challenge) and directed to follow the steps of the EDP to design prototype patient safety systems for small-size model ambulances. While following the steps of the EDP, students identify suitable materials and demonstrate two methods of representing solutions to the design challenge (scale drawings and small-scale prototypes). A successful patient safety system meets all of the project's functions and constraints, including the model patient (a raw egg) "surviving" a front-end collision test with a 1:8 ramp pitch.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jared R. Quinn
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Date Added:
09/18/2014
Interactive Physics Demos
Unrestricted Use
CC BY
Rating
0.0 stars

These Interactive Physics Demonstrations were developed by MAJ James Bowen, MAJ Cathleen Barker, MAJ Andrew Wilhelm, and others at the United States Military Academy for their University Physics course. Each activity is presented as a worksheet, which guides students through an experimental or observational process with questions.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
11/22/2019
Physics I: Classical Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class is an introduction to classical mechanics for students who are comfortable with calculus. The main topics are: Vectors, Kinematics, Forces, Motion, Momentum, Energy, Angular Motion, Angular Momentum, Gravity, Planetary Motion, Moving Frames, and the Motion of Rigid Bodies.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Burgasser, Adam
Date Added:
09/01/2008
Physics I: Classical Mechanics with an Experimental Focus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton’s laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Dourmashkin, Peter
Scholberg, Kate
Date Added:
09/01/2002
Puttin' It All Together
Read the Fine Print
Educational Use
Rating
0.0 stars

On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Skateboard Disaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine collisions between two skateboards with different masses to learn about conservation of momentum in collisions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Testing the Caverns
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build model caverns and bury them in a tray of sand. They test the models by dropping balls onto them to simulate an asteroid hitting the Earth. By molding papier-mache or clay around balloons (to form domes), or around small cardboard boxes (to form rectangular structures), students create unique models of their cavern designs.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
University Physics-1 and -2 Lecture Videos
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

These lecture videos were made during the pandemic when most classes went online. They cover most of Physics-1, and a few chapters of physics-2. Subject: Physics Level: Community CollegeMaterial Type: LectureAuthor: Khalid BukhariDate Added: 2/19/2024

Subject:
Physics
Material Type:
Lecture
Author:
Khalid Bukhari
Date Added:
03/06/2024
Why Do I Need to Wear a Bicycle Helmet?
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Mike Rettberg demonstrates Newton's Laws to his 8th grade science class by rolling a cart containing an egg into a barrier and crashing it. In the process, students learn difficult terms that are reinforced by their discussion of which Laws they are seeing in action.

Subject:
Education
English Language Arts
Language, Grammar and Vocabulary
Physical Science
Physics
Material Type:
Lesson Plan
Teaching/Learning Strategy
Provider:
Teaching Channel
Provider Set:
Teaching Channel
Date Added:
11/01/2012