Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Identify the …
By the end of this section, you will be able to:Identify the spinal cord, cerebral lobes, and other brain areas on a diagram of the brainDescribe the basic functions of the spinal cord, cerebral lobes, and other brain areas
This course provides an outline of vertebrate functional neuroanatomy, aided by studies …
This course provides an outline of vertebrate functional neuroanatomy, aided by studies of comparative neuroanatomy and evolution, and by studies of brain development. Topics include early steps to a central nervous system, basic patterns of brain and spinal cord connections, regional development and differentiation, regeneration, motor and sensory pathways and structures, systems underlying motivations, innate action patterns, formation of habits, and various cognitive functions. In addition, lab techniques are reviewed and students perform brain dissections.
Survey of principles underlying the structure and function of the nervous system, …
Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"A new study suggests that transferring gut microbes from aged to young adult mice has measurable effects on parts of the central nervous system, highlighting the importance of the gut–brain axis in aging. Researchers performed fecal transplants from aged or age-matched donors to younger adult mice. The two groups showed significant differences in their microbial profiles. After transplantation, young adult recipients showed no significant changes in markers of anxiety, explorative behavior, or locomotor activity. But recipients did show impaired spatial learning and memory, as measured by a maze test. These changes were paralleled by alterations in the expression of proteins associated with synaptic plasticity and neurotransmission and changes in microglial cells in the hippocampus — the learning and memory center of the brain..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Extracellular vesicles (EVs) function in many physiological events ranging from normal cellular activity to pathogenic processes. Some EVs prepared in vitro have exhibited therapeutic effects in preclinical models of immune or neurodegenerative disease. In a recent study, researchers generated EVs enriched with HSPB8 (small heat shock protein B8) in vitro from oligodendroglia (OLs). HSPB8 protects cells from oxidative stress-mediated cell death by supporting autophagic activity and could be carried by EVs. Both the native OL-EVs and the HSPB8-enriched OL-EVs were internalized by a microglial cell line and primary mixed neural cultures without inducing cell death. The HSPB8-enriched OL-EVs increased the endogenous production of HSPB8 mRNA. Both EV subsets helped maintain cellular homeostasis during chronic inflammation by increasing autophagic vesicle formation..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
The course will start with an overview of the central and peripheral …
The course will start with an overview of the central and peripheral nervous systems (CNS and PNS), the development of their structure and major divisions. The major functional components of the CNS will then be reviewed individually. Topography, functional distribution of nerve cell bodies, ascending and descending tracts in the spinal cord. Brainstem organization and functional components, including cranial nerve nuclei, ascending / descending pathways, amine-containing cells, structure and information flow in the cerebellar and vestibular systems. Distribution of the cranial nerves, resolution of their skeletal and branchial arch components. Functional divisions of the Diencephalon and Telencephalon. The course will then continue with how these various CNS pieces and parts work together. Motor systems, motor neurons and motor units, medial and lateral pathways, cortical versus cerebellar systems and their functional integration. The sensory systems, visual, auditory and somatosensory. Olfaction will be covered in the context of the limbic system, which will also include autonomic control and the Papez circuit. To conclude, functional organization and information flow in the neocortex will be discussed.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"New research published in the journal Anesthesiology provides fresh insights into how volatile anesthetics affect the central nervous system. Although anesthesia has been practiced for nearly 75 years, the precise cellular mechanisms driving anesthetic responses have remained ambiguous. Recent reports suggest mitochondria have a key role in the process, but prior research has only studied this connection in neurons. Now, researchers argue that astrocytes are also important, particularly when it comes to emergence from anesthesia. To reach this conclusion, the team produced a novel knockout mouse lacking the mitochondrial complex I gene known as Ndufs4. In the model, gene knockout is induced only in astrocytes of adult animals – the other cell types comprising the central nervous system retain functional copes of the gene. The result is astrocyte-specific mitochondrial dysfunction..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Autophagy is the process by which healthy cells degrade and recycle waste material. Researchers are finding that this vital function is interrupted in different forms of cancer, including brain cancer. A new review describes how researchers are repairing broken autophagy pathways in tumors using microRNAs, or miRNAs. miRNAs are small non-coding RNA molecules that regulate a variety of cellular processes— including autophagy. Understanding the molecular targets of miRNAs and their function is crucial, as it could lead to the development of new therapies for patients with brain tumors..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Inflammation in the brain is a hallmark of many neurodegenerative diseases, including Alzheimer’s and Huntington’s disease. One of the key orchestrators of neuroinflammation is IL-6, a cytokine secreted by brain-resident cells called astrocytes. While low levels of IL-6 support neurons and synapses in the brain higher levels of IL-6 are produced in response to injury or infection, triggering a series of proinflammatory signaling cascades. Unfortunately, how astrocytes regulate IL-6 expression remains unclear. A recent study evaluated signaling pathways involved in IL-6 gene regulation, including β-catenin, TCFs/LEF, C/EBP, and NF-κB. Using human astrocytes, researchers silenced or overexpressed the signaling proteins and measured IL-6 levels. They found that TCF/LEF induces IL-6 in the presence of ATF2, while β-catenin inhibits IL-6 by interacting with TCF/LEF. Interestingly, neither of these signaling pathways is known to regulate IL-6 in other cell types..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.