Biofuels are an energy currency derived from renewable biological sources, such as …
Biofuels are an energy currency derived from renewable biological sources, such as plants, algae, and organic waste materials. They can replace fossil fuels like gasoline and diesel. However, current feedstock use and production methods raise debates and concerns related to their environmental impact, land use, and competition with food production. Biofuels are mainly used for transportation, but they are a very small contributor to transportation energy. Demand for biofuels is expected to grow in the next five years due to climate goals and policy mandates.
In some cities, especially large cities such as Los Angeles or Mexico …
In some cities, especially large cities such as Los Angeles or Mexico City, visible air pollution is a major problem, both for human health and the environment. A variety of sources contribute to air pollution, but personal vehicles account for one of the main sources. Though each car has relatively low emissions when compared to vehicles of the 1970s, there are so many more cars on the road now that their emissions play a large role in overall pollution. In this activity, students think about alternate ways to power a vehicle to reduce emissions. Student teams design an eco-friendly car using the engineering design process, and make a presentation to showcase their product.
D-Lab Development addresses issues of technological improvements at the micro level for …
D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to be visited as well as an introduction to the local languages.
D-Lab Development addresses issues of technological improvements at the micro level for …
D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to be visited as well as an introduction to the local languages.
What is energy? It's the hot in heat, the glow in light, …
What is energy? It's the hot in heat, the glow in light, the push in wind, the pound in water, the sound of thunder and the crack of lightening. It is the pull that keeps us (and everything else!) from simply flying apart, and the promise of an oak deep in an acorn. It is all the same, and it is all different. Sunshine and waterfalls won't start your car, and wind won't run the dishwasher. But, if we match the form and timing of the energy with your needs, all of these things could be true. Energy in a Changing World is about the full arc of energy transformation, delivery, use, economics and environmental impact, especially climate change.
The activity described herein can be implemented in introductory chemistry and high …
The activity described herein can be implemented in introductory chemistry and high school chemistry courses. The main goal of the project is to integrate a ubiquitous biodiesel production with experiential learning by providing a community-based project. The students work in groups, research the benefits of using biodiesel over petroleum-based diesel, collect waste cooking oil from home or restaurants, develop simple and cost-effective methods to produce biodiesel, as well as making soap.
How can we manufacture environmentally friendly fuels using renewable sources? In this …
How can we manufacture environmentally friendly fuels using renewable sources? In this lesson, students will explore the process used to produce biodiesel from soybeans and test the efficiency of their fuel.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Biodiesel from plant oils could be the fuel of the future, but the low quality of certain plant oils means that getting there will take some engineering. So, researchers are turning to genetics for a solution. They’ve developed a transgenic soybean line that could dramatically increase biodiesel performance. Biodiesel performance relies on the fatty acid composition of the source oil. On average, soybean oil is only 25% oleic acid, which is a desirable monounsaturated fatty acid, and 13% palmitic acid, an undesirable saturated fatty acid. This fatty acid profile negatively affects biodiesel’s rate of nitrogen oxide emission and freezing point. Through metabolic engineering, the soybean genes FAD2-1 and FatB were down-regulated using RNA interference technology to increase the production of oleic acid to nearly 95% and decrease the production of palmitic acid to less than 3%, with no detectable differences in the fatty acid chemical structure between modified and standard soybean lines..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.