Updating search results...

Search Resources

3 Results

View
Selected filters:
  • biochemical
Biomolecular Feedback Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Del Vecchio, Domitilla
Date Added:
02/01/2015
Ion-Exchange Chromatography
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

We now know how to analyze pure compounds, but what if we have a mixture? Spectrophometry becomes quite complex when dealing with multiple species of compounds at once. In order to purify a compound we can separate if from a mixture based on its intrinsic chemical properties. Remember that fluorescein is negatively charged at a pH above pKa of the carboxyl group. We can take advantage of this fact and use its attraction to positive charges to separate it from other molecules. In ion-exchange chromatography, we will use a stationary phase with a positive charge, allowing negatively charged molecules to bind and positively charged species to flow through. We can then disrupt this interaction and retrieve our now-purified molecule, and use spectrophotometric analysis of our purified fractions to determine how well we were able to separate our molecules.

Material Type:
Activity/Lab
Lecture Notes
Student Guide
Textbook
Date Added:
02/06/2015
pKa of Fluorescein
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Previously, we showed how different compounds absorb light. The chemical structure of a molecule determines exactly how much light it absorbs, as well as which wavelengths are absorbed. It stands to reason then, that by removing an atom from a molecule, we can change the way it absorbs light. In this experiment, we will relate these two concepts by measuring the absorbance of a molecule under acidic and basic conditions. The changing pH will allow us to find how strongly a specific hydrogen is attached to our molecule, and we will observe how the changing chemical structure affects the observed absorbance. Afterwards, using mathematical analysis, we can experimentally determine the pKa, or affinity of our hydrogen to our parent molecule.

Material Type:
Activity/Lab
Student Guide
Date Added:
02/06/2015