Students play and record the “Mary Had a Little Lamb” song using …
Students play and record the “Mary Had a Little Lamb” song using musical instruments and analyze the intensity of the sound using free audio editing and recording software. Then they use hollow Styrofoam half-spheres as acoustic mirrors (devices that reflect and focus sound), determine the radius of curvature of the mirror and calculate its focal length. Students place a microphone at the acoustic mirror focal point, re-record their songs, and compare the sound intensity on plot spectrums generated from their recordings both with and without the acoustic mirrors. A worksheet and KWL chart are provided.
This course will begin with brief overview of what important current research …
This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution.
Acoustics (from Greek ακουστικός pronounced akoustikos meaning "of or for hearing, ready …
Acoustics (from Greek ακουστικός pronounced akoustikos meaning "of or for hearing, ready to hear") is the science that studies sound, in particular its production, transmission, and effects. The science of acoustics has many applications which are dependent upon the nature of the sound that is to be produced, transmitted or controlled.
The Acoustics of Speech and Hearing is an H-Level graduate course that …
The Acoustics of Speech and Hearing is an H-Level graduate course that reviews the physical processes involved in the production, propagation and reception of human speech. Particular attention is paid to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable of producing and what sounds we can sense. Areas of discussion include:
the acoustic cues used in determining the direction of a sound source,
the acoustic and mechanical mechanisms involved in speech production and
the acoustic and mechanical mechanism used to transduce and analyze sounds in the ear.
Students are presented with the following challenge: their new school is under …
Students are presented with the following challenge: their new school is under construction and the architect accidentally put the music room next to the library. Students need to design a room that will absorb the most amount of sound so that the music does not disturb the library. Students use a box as a proxy for the room need to create a design that will decrease the sound that is coming from the outside of the box. To evaluate this challenge, students use a speaker within the box and a decibel meter outside the box to measure the effectiveness of their design.
This course explores electromagnetic phenomena in modern applications, including wireless and optical …
This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell’s equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.
Students model and design the sound environment for a room. They analyze …
Students model and design the sound environment for a room. They analyze the sound performance of different materials that represent wallpaper, thick curtains, and sound-absorbing panels. Then, referring to the results of their analysis, they design another room based on certain specifications, and test their designs.
Learn how to make waves of all different shapes by adding up …
Learn how to make waves of all different shapes by adding up sines or cosines. Make waves in space and time and measure their wavelengths and periods. See how changing the amplitudes of different harmonics changes the waves. Compare different mathematical expressions for your waves.
This website provides a set of course material (in english and german) …
This website provides a set of course material (in english and german) for undergraduate (bachelor) students in sound engineering and music production among others on the following topics:1/ fundamentals of acoustics for music production: the sound wave, sound sources, interactions and phase, instrumental acoustics, room acoustics2/ fundamentals of psychoacoustics for music production: perception of loudness, perception of pitch and intervals, spatial hearing, perception of timbreThese courses are made available for educational and non-commercial purposes under the terms of the creative commons license “attribution-noncommercial-sharealike 4.0 international (cc by-nc-sa 4.0)”.Pdf versions (without animations and sound examples) are also available on slideshare (https://de.slideshare.net/AlexisBaskind/presentations).Comments and suggestions are of course welcome, don’t hesitate to contact me.
This course emphasizes concepts and techniques for solving integral equations from an …
This course emphasizes concepts and techniques for solving integral equations from an applied mathematics perspective. Material is selected from the following topics: Volterra and Fredholm equations, Fredholm theory, the Hilbert-Schmidt theorem; Wiener-Hopf Method; Wiener-Hopf Method and partial differential equations; the Hilbert Problem and singular integral equations of Cauchy type; inverse scattering transform; and group theory. Examples are taken from fluid and solid mechanics, acoustics, quantum mechanics, and other applications.
The course aims at providing a fundamental understanding of the physics related …
The course aims at providing a fundamental understanding of the physics related to buildings and to propose an overview of the various issues that have to be adequately combined to offer the occupants a physical, functional and psychological well-being. Students will be guided through the different components, constraints and systems of a work of architecture. These will be examined both independently and in the manner in which they interact and affect one another.
Open tube resonators of nearly identical length produce sound waves with frequencies …
Open tube resonators of nearly identical length produce sound waves with frequencies very close together. The difference between the two frequenciesy is the beat note frequency heard when two resonators (musical intruments)are slightly out-of-tune.
Students use a microphone and Vernier LabQuest to record the sound of …
Students use a microphone and Vernier LabQuest to record the sound of a finger-snap echo in a 1-2 meter cardboard tube. Students measure the time for the echo to return to the microphone, and measure the length of the tube. Using their measurements, students determine the speed of sound. While other authors have produced similar labs, this version includes uncertainty analysis consistent with effective measurement technique as presented in the module Measurement and Uncertainty.
This course is about the study of speech sounds; how we produce …
This course is about the study of speech sounds; how we produce and perceive them and their acoustic properties. Topics include the influence of the production and perception systems on phonological patterns and sound change, students learn acoustic analysis and experimental techniques. Students taking the graduate version complete different assignments.
This resources explains the three musical part of sound, Pitch, Timbre and …
This resources explains the three musical part of sound, Pitch, Timbre and Volume. Topics of pitch include acoustical sound, compressions and rarefactions, waveform, frequency, cycles, phase and the hearing range. Timbre involves fundamentals, harmonics, partials and ovetones. Volume is dicussed in terms of amplitude and decibels. The concepts of musical space and sound envelope are also discussed.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"In the battle against mosquito-born disease, scientists are turning to one of the world’s oldest practices for help: matchmaking. Releasing sterile or genetically altered male mosquitoes into the wild to mate with females prevents those mosquitoes from reproducing and going on to spread disease. But understanding more about what females find attractive could help create males they’ll mate with. So what do female mosquitoes look for in a mate? Researchers from the United Kingdom recently revealed that being a good listener matters…at least to Aedes aegypti mosquitoes, a species responsible for transmitting diseases such as yellow fever, dengue, and Zika. Many mosquito species mate in midair. As they fly, their beating wings produce unique sound patterns, and a male must match a female’s sound pattern to gain her romantic interest. This is called harmonic convergence. Various factors influence how well the insects can match these mating tunes, but the researchers decided to focus on body size..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This simulation lets you see sound waves. Adjust the frequency or volume …
This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave changes. Move the listener around and hear what she hears.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.