Updating search results...

Search Resources

3 Results

View
Selected filters:
Introduction to Systems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The development of systems and network concepts for students can begin with this highly interactive inquiry into cell phone networks. Cell phones serve as a handy knowledge base on which to develop understanding. Each cell phone represents a node, and each phone’s address book represents an edge, or the calling relationships between cell phones. Students conceptualize the entire cell phone network by drawing a graphic that depicts each cell phone in the class as a circle (node) connected by directional lines (edges) to their classmate’s cell phones in their address book. Students are queried on the shortest pathway for calling and calling pathways when selected phones are knocked out using school and classroom scenarios.

Students then use a simulation followed by Cytoscape, visually graphing software, to model and interrogate the structure and properties of the class’s cell phone network. They investigate more advanced calling relationships and perturb the network (knock out cell towers) to reexamine the adjusted network’s properties. Advanced questions about roaming, cell towers and email focus on a deeper understanding of network behavior. Both the paper and software network exercises highlight numerous properties of networks and the activities of scientists with biological networks.

Target Audience:
This is an introductory module that we recommend teaching before each of our other modules to give students a background in systems. This module can be applied easily to any content area and works best as written for students between 6th and 12th grades but can be adapted for other ages. The lessons work best when in-person with students. If you are looking for an Introduction to Systems for remote learning, please use our Systems are Everywhere module.

Subject:
Applied Science
Information Science
Material Type:
Activity/Lab
Homework/Assignment
Interactive
Lesson
Lesson Plan
Module
Simulation
Student Guide
Unit of Study
Author:
Baliga Lab
Camille Scalise
Claudia Ludwig
Dan Tenenbaum
Gregory Alvarado
Institute for Systems Biology
Jeannine Sieler
John Thompson
Kathee Terry
Megan Meislin
Nitin S. Baliga (Institute for Systems Biology;)
Patrick Ehrman (Institue for Systems Biology;)
Paul Shannon
Rich Bonneau
Sarah Nehring
Simin Marzanian
Stephanie Gill
Systems Education Experiences
Date Added:
01/24/2023
Ocean Acidification: A Systems Approach to a Global Problem
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this curriculum module, students in high school life science, marine science, and/or chemistry courses act as interdisciplinary scientists and delegates to investigate how the changing carbon cycle will affect the oceans along with their integral populations.

The oceans cover 70 percent of the planet and play a critical role in regulating atmospheric carbon dioxide through the interaction of physical, chemical, and biological processes. As a result of anthropogenic activity, a doubling of the atmospheric CO2 concentration (to 760 ppm) is expected to occur by the end of this century. A quarter of the total CO2 emitted has already been absorbed by the surface oceans, changing the marine carbonate system, resulting in a decrease in pH, a change in carbonate-ion concentrations, and a change in the speciation of macro and micronutrients. The shift in the carbonate system is already drastically affecting biological processes in the oceans and is predicted to have major consequences on carbon export to the deep ocean with reverberating effects on atmospheric CO2. Put in simple terms, ocean acidification is a complex phenomenon with complex consequences. Understanding complexity and the impact of ocean acidification requires systems thinking – both in research and in education. Scientific advancement will help us better understand the problem and devise more effective solutions, but executing these solutions will require widespread public participation to mitigate this global problem.

Through these lessons, students closely model what is occurring in laboratories worldwide and at Institute for Systems Biology (ISB) through Monica Orellana’s research to analyze the effect CO2 has on ocean chemistry, ecosystems and human societies. Students experiment, analyze public data, and prepare for a mock summit to address concerns. Student groups represent key “interest groups” and design two experiments to observe the effects of CO2 on seawater pH, diatom growth, algal blooms, nutrient availability, and/or shell dissolution.

Subject:
Atmospheric Science
Physical Science
Material Type:
Module
Author:
Aisha McKee
Alexis Boleda
Alexis Valauri-Orton
Allison Lee Cusick
Anna Farrell-Sherman
Baliga Lab
Barbara Steffens
Claudia Ludwig
Danny Thomson
Dexter Chapin
Dina Kovarik
Donald Cho
Eric Grewal
Eric Muhs
Helen Ippolito
Holly Kuestner
Institute for Systems Biology
Jeannine Sieler
Jennifer Duncan-Taylor
Jia Hao Xu
JoAnn Chrisman
Jocelyn Lee
Kedus Getaneh
Kevin Baker
Mari Knutson Herbert
Megan DeVault
Meredith Carlson
Michael Walker
Monica V. Orellana
Nitin S. Baliga
Olachi Oleru
Raisah Vestindottir
Steven Do
Systems Education Experiences
William Harvey
Zac Simon
Date Added:
03/09/2023
Our Invisible Forest: What's in a Drop of Seawater?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Take a breath — where does the oxygen you inhaled come from? In our changing world, will we always have enough oxygen? What is in water that supports life? What is known? How do we know what we know about our vast oceans? These are just a few of the driving questions explored in this interactive STEAM high school curriculum module.

Students in marine science, environmental science, physics, chemistry, biology, integrated science, biotechnology and/or STEAM courses can use this curriculum module in order to use real-world, big data to investigate how our “invisible forest” influences ocean and Earth systems. Students build an art project to represent their new understanding and share this with the broader community.

This 4-week set of lessons is based on the oceanographic research of Dr. Anne Thompson of Portland State University in Oregon, which focuses on the abundant ocean phytoplankton Prochlorococcus. These interdisciplinary STEAM lessons were inspired by Dr. Thompson’s lab and fieldwork as well as many beautiful visualizations of Prochlorococcus, the ocean, and Earth. Students learn about the impact and importance of Prochlorococcus as the smallest and most abundant photosynthetic organism on our planet. Through the lessons, students act as both scientists and artists as they explore where breathable oxygen comes from and consider how to communicate the importance of tiny cells to human survival.

This module is written as a phenomenon-based, Next Generation Science Standards (NGSS) three-dimensional learning unit. Each of the lessons below also has an integrated, optional Project-Based Learning component that guides students as they complete the PBL process. Students learn to model a system and also design and evaluate questions to investigate phenomena. Students ultimately learn what is in a drop of ocean water and showcase how their drop contributes to our health and the stability and dynamics of global systems.

Subject:
Applied Science
Environmental Science
Material Type:
Module
Author:
Amanda Cope
Anne W. Thompson
Baliga Lab
Barbara Steffens
Claudia Ludwig
Emily Borden
Institute for Systems Biology
Jeannine Sieler
Linnea Stavney
Mari Knutson Herbert
Mark Buchli
Michael Walker
Nitin S. Baliga
Portland State University
Uzma Khalil
Date Added:
03/09/2023