This lesson explores the similarities between how a human being moves/walks and …
This lesson explores the similarities between how a human being moves/walks and how a robot moves. This allows students to see the human body as a system, i.e., from the perspective of an engineer. It shows how movement results from (i) decision making, i.e., deciding to walk and move, and (ii) implementing the decision by conveying the decision to the muscle (human) or motor (robot).
This lesson highlights the similarities between human sensors and their engineering counterparts. …
This lesson highlights the similarities between human sensors and their engineering counterparts. Taking this approach enables students to view the human body as a system, that is, from the perspective of an engineer. Humans have recreated most human sensors in robots – eyes, ears and sensors for temperature, touch and smell. The lesson inculdes a PowerPoint file that is programmed to run a Jeopardy-style game as a fun assessment tool.
Four lessons related to robots and people present students with life sciences …
Four lessons related to robots and people present students with life sciences concepts related to the human body (including brain, nervous systems and muscles), introduced through engineering devices and subjects (including computers, actuators, electricity and sensors), via hands-on LEGO® robot activities. Students learn what a robot is and how it works, and then the similarities and differences between humans and robots. For instance, in lesson 3 and its activity, the human parts involved in moving and walking are compared with the corresponding robot components so students see various engineering concepts at work in the functioning of the human body. This helps them to see the human body as a system, that is, from the perspective of an engineer. Students learn how movement results from 1) decision making, such as deciding to walk and move, and 2) implementation by conveying decisions to muscles (human) or motors (robot).
This activity helps students understand the significance of programming and also how …
This activity helps students understand the significance of programming and also how the LEGO MINDSTORMS(TM) NXT robot's sensors assist its movement and make programming easier. Students compare human senses to robot sensors, describing similarities and differences.
Student pairs first act out the instructions a robot is given with …
Student pairs first act out the instructions a robot is given with one person providing instructions and the other person following the instructions. This activity helps students understand how robots are programmed and with what type of precision commands must be given. Then students program LEGO MINDSTORMS(TM) NXT taskbots to navigate a simple maze. The goal is to teach students that robot computers simply follow directions exactly as they are given, thus one must be very clear and logical with programming instructions.
This activity helps students understand how a LEGO MINDSTORMS(TM) NXT robot moves …
This activity helps students understand how a LEGO MINDSTORMS(TM) NXT robot moves using motors and wheels. Then students relate the concepts of decision-making actuation and motion in humans to their parallels in mechanized robots, and understand the common themes associated with movement.
This lesson introduces students to the major characteristics of robots. The associated …
This lesson introduces students to the major characteristics of robots. The associated activity uses the LEGO MINDSTORMS(TM) NXT system as an example. Before studying robots in more detail, it is important for students to consider the many items they encounter in their daily lives that are robots so they can explore ways engineers can utilize robotics to solve problems in everyday life.The activity also serves as an introduction to the LEGO NXT system so that students may utilize it as an educational tool in subsequent lessons and activities.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.